| Step | Hyp | Ref
| Expression |
| 1 | | prodeq1 15928 |
. . . 4
⊢ (𝑤 = ∅ → ∏𝑘 ∈ 𝑤 𝐶 = ∏𝑘 ∈ ∅ 𝐶) |
| 2 | 1 | mpteq2dv 5220 |
. . 3
⊢ (𝑤 = ∅ → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶)) |
| 3 | 2 | eleq1d 2820 |
. 2
⊢ (𝑤 = ∅ → ((𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑤 𝐶) ∈ (𝐴–cn→ℂ) ↔ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶) ∈ (𝐴–cn→ℂ))) |
| 4 | | prodeq1 15928 |
. . . 4
⊢ (𝑤 = 𝑧 → ∏𝑘 ∈ 𝑤 𝐶 = ∏𝑘 ∈ 𝑧 𝐶) |
| 5 | 4 | mpteq2dv 5220 |
. . 3
⊢ (𝑤 = 𝑧 → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶)) |
| 6 | 5 | eleq1d 2820 |
. 2
⊢ (𝑤 = 𝑧 → ((𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑤 𝐶) ∈ (𝐴–cn→ℂ) ↔ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ))) |
| 7 | | prodeq1 15928 |
. . . 4
⊢ (𝑤 = (𝑧 ∪ {𝑦}) → ∏𝑘 ∈ 𝑤 𝐶 = ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) |
| 8 | 7 | mpteq2dv 5220 |
. . 3
⊢ (𝑤 = (𝑧 ∪ {𝑦}) → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶)) |
| 9 | 8 | eleq1d 2820 |
. 2
⊢ (𝑤 = (𝑧 ∪ {𝑦}) → ((𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑤 𝐶) ∈ (𝐴–cn→ℂ) ↔ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) ∈ (𝐴–cn→ℂ))) |
| 10 | | prodeq1 15928 |
. . . 4
⊢ (𝑤 = 𝐵 → ∏𝑘 ∈ 𝑤 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
| 11 | 10 | mpteq2dv 5220 |
. . 3
⊢ (𝑤 = 𝐵 → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝐵 𝐶)) |
| 12 | 11 | eleq1d 2820 |
. 2
⊢ (𝑤 = 𝐵 → ((𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑤 𝐶) ∈ (𝐴–cn→ℂ) ↔ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝐵 𝐶) ∈ (𝐴–cn→ℂ))) |
| 13 | | prod0 15964 |
. . . . 5
⊢
∏𝑘 ∈
∅ 𝐶 =
1 |
| 14 | 13 | a1i 11 |
. . . 4
⊢ (𝜑 → ∏𝑘 ∈ ∅ 𝐶 = 1) |
| 15 | 14 | mpteq2dv 5220 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶) = (𝑥 ∈ 𝐴 ↦ 1)) |
| 16 | | fprodcncf.a |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| 17 | | 1cnd 11235 |
. . . 4
⊢ (𝜑 → 1 ∈
ℂ) |
| 18 | | ssidd 3987 |
. . . 4
⊢ (𝜑 → ℂ ⊆
ℂ) |
| 19 | 16, 17, 18 | constcncfg 45881 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 1) ∈ (𝐴–cn→ℂ)) |
| 20 | 15, 19 | eqeltrd 2835 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶) ∈ (𝐴–cn→ℂ)) |
| 21 | | nfcv 2899 |
. . . . . 6
⊢
Ⅎ𝑢∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶 |
| 22 | | nfcv 2899 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑧 ∪ {𝑦}) |
| 23 | | nfcsb1v 3903 |
. . . . . . 7
⊢
Ⅎ𝑥⦋𝑢 / 𝑥⦌𝐶 |
| 24 | 22, 23 | nfcprod 15930 |
. . . . . 6
⊢
Ⅎ𝑥∏𝑘 ∈ (𝑧 ∪ {𝑦})⦋𝑢 / 𝑥⦌𝐶 |
| 25 | | csbeq1a 3893 |
. . . . . . . 8
⊢ (𝑥 = 𝑢 → 𝐶 = ⦋𝑢 / 𝑥⦌𝐶) |
| 26 | 25 | adantr 480 |
. . . . . . 7
⊢ ((𝑥 = 𝑢 ∧ 𝑘 ∈ (𝑧 ∪ {𝑦})) → 𝐶 = ⦋𝑢 / 𝑥⦌𝐶) |
| 27 | 26 | prodeq2dv 15943 |
. . . . . 6
⊢ (𝑥 = 𝑢 → ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶 = ∏𝑘 ∈ (𝑧 ∪ {𝑦})⦋𝑢 / 𝑥⦌𝐶) |
| 28 | 21, 24, 27 | cbvmpt 5228 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) = (𝑢 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})⦋𝑢 / 𝑥⦌𝐶) |
| 29 | 28 | a1i 11 |
. . . 4
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ)) → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) = (𝑢 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})⦋𝑢 / 𝑥⦌𝐶)) |
| 30 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑘((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) |
| 31 | | nfcsb1v 3903 |
. . . . . . . 8
⊢
Ⅎ𝑘⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶 |
| 32 | | fprodcncf.b |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 33 | 32 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → 𝐵 ∈ Fin) |
| 34 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → 𝑧 ⊆ 𝐵) |
| 35 | | ssfi 9192 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ Fin ∧ 𝑧 ⊆ 𝐵) → 𝑧 ∈ Fin) |
| 36 | 33, 34, 35 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → 𝑧 ∈ Fin) |
| 37 | 36 | adantrr 717 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) → 𝑧 ∈ Fin) |
| 38 | 37 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) → 𝑧 ∈ Fin) |
| 39 | | vex 3468 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
| 40 | 39 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) → 𝑦 ∈ V) |
| 41 | | eldifn 4112 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐵 ∖ 𝑧) → ¬ 𝑦 ∈ 𝑧) |
| 42 | 41 | ad2antll 729 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) → ¬ 𝑦 ∈ 𝑧) |
| 43 | 42 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) → ¬ 𝑦 ∈ 𝑧) |
| 44 | | simplll 774 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) ∧ 𝑘 ∈ 𝑧) → 𝜑) |
| 45 | | simplr 768 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) ∧ 𝑘 ∈ 𝑧) → 𝑢 ∈ 𝐴) |
| 46 | 34 | adantrr 717 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) → 𝑧 ⊆ 𝐵) |
| 47 | 46 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) ∧ 𝑘 ∈ 𝑧) → 𝑧 ⊆ 𝐵) |
| 48 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) ∧ 𝑘 ∈ 𝑧) → 𝑘 ∈ 𝑧) |
| 49 | 47, 48 | sseldd 3964 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) ∧ 𝑘 ∈ 𝑧) → 𝑘 ∈ 𝐵) |
| 50 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) |
| 51 | 23 | nfel1 2916 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ |
| 52 | 50, 51 | nfim 1896 |
. . . . . . . . . 10
⊢
Ⅎ𝑥((𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → ⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ) |
| 53 | | eleq1w 2818 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑢 → (𝑥 ∈ 𝐴 ↔ 𝑢 ∈ 𝐴)) |
| 54 | 53 | 3anbi2d 1443 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑢 → ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) ↔ (𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵))) |
| 55 | 25 | eleq1d 2820 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑢 → (𝐶 ∈ ℂ ↔ ⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ)) |
| 56 | 54, 55 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑢 → (((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) ↔ ((𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → ⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ))) |
| 57 | | fprodcncf.c |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
| 58 | 52, 56, 57 | chvarfv 2241 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → ⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ) |
| 59 | 44, 45, 49, 58 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) ∧ 𝑘 ∈ 𝑧) → ⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ) |
| 60 | | csbeq1a 3893 |
. . . . . . . 8
⊢ (𝑘 = 𝑦 → ⦋𝑢 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶) |
| 61 | | simpll 766 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) → 𝜑) |
| 62 | | eldifi 4111 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (𝐵 ∖ 𝑧) → 𝑦 ∈ 𝐵) |
| 63 | 62 | ad2antll 729 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) → 𝑦 ∈ 𝐵) |
| 64 | 63 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) → 𝑦 ∈ 𝐵) |
| 65 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ 𝐴) |
| 66 | | simpll 766 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ 𝐴) → 𝜑) |
| 67 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ 𝐴) |
| 68 | | simplr 768 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ 𝐴) → 𝑦 ∈ 𝐵) |
| 69 | | nfv 1914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 70 | | nfcv 2899 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘ℂ |
| 71 | 31, 70 | nfel 2914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ |
| 72 | 69, 71 | nfim 1896 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘((𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ) |
| 73 | | eleq1w 2818 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑦 → (𝑘 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
| 74 | 73 | 3anbi3d 1444 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑦 → ((𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) ↔ (𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 75 | 60 | eleq1d 2820 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑦 → (⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ ↔ ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ)) |
| 76 | 74, 75 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑦 → (((𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → ⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ) ↔ ((𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ))) |
| 77 | 72, 76, 58 | chvarfv 2241 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ) |
| 78 | 66, 67, 68, 77 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ 𝐴) → ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ) |
| 79 | 61, 64, 65, 78 | syl21anc 837 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) → ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ) |
| 80 | 30, 31, 38, 40, 43, 59, 60, 79 | fprodsplitsn 16010 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) → ∏𝑘 ∈ (𝑧 ∪ {𝑦})⦋𝑢 / 𝑥⦌𝐶 = (∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶 · ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶)) |
| 81 | 80 | mpteq2dva 5219 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) → (𝑢 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})⦋𝑢 / 𝑥⦌𝐶) = (𝑢 ∈ 𝐴 ↦ (∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶 · ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶))) |
| 82 | 81 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ)) → (𝑢 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})⦋𝑢 / 𝑥⦌𝐶) = (𝑢 ∈ 𝐴 ↦ (∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶 · ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶))) |
| 83 | | nfcv 2899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑢∏𝑘 ∈ 𝑧 𝐶 |
| 84 | | nfcv 2899 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝑧 |
| 85 | 84, 23 | nfcprod 15930 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶 |
| 86 | 25 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑢 ∧ 𝑘 ∈ 𝑧) → 𝐶 = ⦋𝑢 / 𝑥⦌𝐶) |
| 87 | 86 | prodeq2dv 15943 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑢 → ∏𝑘 ∈ 𝑧 𝐶 = ∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶) |
| 88 | 83, 85, 87 | cbvmpt 5228 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) = (𝑢 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶) |
| 89 | 88 | eqcomi 2745 |
. . . . . . . . 9
⊢ (𝑢 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶) = (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) |
| 90 | 89 | a1i 11 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ) → (𝑢 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶) = (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶)) |
| 91 | | id 22 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ) → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ)) |
| 92 | 90, 91 | eqeltrd 2835 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ) → (𝑢 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ)) |
| 93 | 92 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ)) → (𝑢 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ)) |
| 94 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝜑 ∧ 𝑦 ∈ 𝐵) |
| 95 | | nfcv 2899 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘𝐴 |
| 96 | 95, 31 | nfmpt 5224 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝑢 ∈ 𝐴 ↦ ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶) |
| 97 | | nfcv 2899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝐴–cn→ℂ) |
| 98 | 96, 97 | nfel 2914 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝑢 ∈ 𝐴 ↦ ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ) |
| 99 | 94, 98 | nfim 1896 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑢 ∈ 𝐴 ↦ ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ)) |
| 100 | 73 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑦 → ((𝜑 ∧ 𝑘 ∈ 𝐵) ↔ (𝜑 ∧ 𝑦 ∈ 𝐵))) |
| 101 | 60 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑘 = 𝑦 ∧ 𝑢 ∈ 𝐴) → ⦋𝑢 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶) |
| 102 | 101 | mpteq2dva 5219 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑦 → (𝑢 ∈ 𝐴 ↦ ⦋𝑢 / 𝑥⦌𝐶) = (𝑢 ∈ 𝐴 ↦ ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶)) |
| 103 | 102 | eleq1d 2820 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑦 → ((𝑢 ∈ 𝐴 ↦ ⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ) ↔ (𝑢 ∈ 𝐴 ↦ ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ))) |
| 104 | 100, 103 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑘 = 𝑦 → (((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑢 ∈ 𝐴 ↦ ⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ)) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑢 ∈ 𝐴 ↦ ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ)))) |
| 105 | | nfcv 2899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑢𝐶 |
| 106 | 105, 23, 25 | cbvmpt 5228 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑢 ∈ 𝐴 ↦ ⦋𝑢 / 𝑥⦌𝐶) |
| 107 | | fprodcncf.cn |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ (𝐴–cn→ℂ)) |
| 108 | 106, 107 | eqeltrrid 2840 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑢 ∈ 𝐴 ↦ ⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ)) |
| 109 | 99, 104, 108 | chvarfv 2241 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑢 ∈ 𝐴 ↦ ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ)) |
| 110 | 63, 109 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) → (𝑢 ∈ 𝐴 ↦ ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ)) |
| 111 | 110 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ)) → (𝑢 ∈ 𝐴 ↦ ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ)) |
| 112 | 93, 111 | mulcncf 25403 |
. . . . 5
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ)) → (𝑢 ∈ 𝐴 ↦ (∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶 · ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶)) ∈ (𝐴–cn→ℂ)) |
| 113 | 82, 112 | eqeltrd 2835 |
. . . 4
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ)) → (𝑢 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ)) |
| 114 | 29, 113 | eqeltrd 2835 |
. . 3
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ)) → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) ∈ (𝐴–cn→ℂ)) |
| 115 | 114 | ex 412 |
. 2
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) → ((𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ) → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) ∈ (𝐴–cn→ℂ))) |
| 116 | 3, 6, 9, 12, 20, 115, 32 | findcard2d 9185 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝐵 𝐶) ∈ (𝐴–cn→ℂ)) |