Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodcncf Structured version   Visualization version   GIF version

Theorem fprodcncf 45423
Description: The finite product of continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodcncf.a (𝜑𝐴 ⊆ ℂ)
fprodcncf.b (𝜑𝐵 ∈ Fin)
fprodcncf.c ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
fprodcncf.cn ((𝜑𝑘𝐵) → (𝑥𝐴𝐶) ∈ (𝐴cn→ℂ))
Assertion
Ref Expression
fprodcncf (𝜑 → (𝑥𝐴 ↦ ∏𝑘𝐵 𝐶) ∈ (𝐴cn→ℂ))
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐶(𝑥,𝑘)

Proof of Theorem fprodcncf
Dummy variables 𝑢 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 15889 . . . 4 (𝑤 = ∅ → ∏𝑘𝑤 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
21mpteq2dv 5251 . . 3 (𝑤 = ∅ → (𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) = (𝑥𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶))
32eleq1d 2810 . 2 (𝑤 = ∅ → ((𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶) ∈ (𝐴cn→ℂ)))
4 prodeq1 15889 . . . 4 (𝑤 = 𝑧 → ∏𝑘𝑤 𝐶 = ∏𝑘𝑧 𝐶)
54mpteq2dv 5251 . . 3 (𝑤 = 𝑧 → (𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) = (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶))
65eleq1d 2810 . 2 (𝑤 = 𝑧 → ((𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)))
7 prodeq1 15889 . . . 4 (𝑤 = (𝑧 ∪ {𝑦}) → ∏𝑘𝑤 𝐶 = ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶)
87mpteq2dv 5251 . . 3 (𝑤 = (𝑧 ∪ {𝑦}) → (𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) = (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶))
98eleq1d 2810 . 2 (𝑤 = (𝑧 ∪ {𝑦}) → ((𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) ∈ (𝐴cn→ℂ)))
10 prodeq1 15889 . . . 4 (𝑤 = 𝐵 → ∏𝑘𝑤 𝐶 = ∏𝑘𝐵 𝐶)
1110mpteq2dv 5251 . . 3 (𝑤 = 𝐵 → (𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) = (𝑥𝐴 ↦ ∏𝑘𝐵 𝐶))
1211eleq1d 2810 . 2 (𝑤 = 𝐵 → ((𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴 ↦ ∏𝑘𝐵 𝐶) ∈ (𝐴cn→ℂ)))
13 prod0 15923 . . . . 5 𝑘 ∈ ∅ 𝐶 = 1
1413a1i 11 . . . 4 (𝜑 → ∏𝑘 ∈ ∅ 𝐶 = 1)
1514mpteq2dv 5251 . . 3 (𝜑 → (𝑥𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶) = (𝑥𝐴 ↦ 1))
16 fprodcncf.a . . . 4 (𝜑𝐴 ⊆ ℂ)
17 1cnd 11241 . . . 4 (𝜑 → 1 ∈ ℂ)
18 ssidd 4000 . . . 4 (𝜑 → ℂ ⊆ ℂ)
1916, 17, 18constcncfg 45395 . . 3 (𝜑 → (𝑥𝐴 ↦ 1) ∈ (𝐴cn→ℂ))
2015, 19eqeltrd 2825 . 2 (𝜑 → (𝑥𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶) ∈ (𝐴cn→ℂ))
21 nfcv 2891 . . . . . 6 𝑢𝑘 ∈ (𝑧 ∪ {𝑦})𝐶
22 nfcv 2891 . . . . . . 7 𝑥(𝑧 ∪ {𝑦})
23 nfcsb1v 3914 . . . . . . 7 𝑥𝑢 / 𝑥𝐶
2422, 23nfcprod 15891 . . . . . 6 𝑥𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶
25 csbeq1a 3903 . . . . . . . 8 (𝑥 = 𝑢𝐶 = 𝑢 / 𝑥𝐶)
2625adantr 479 . . . . . . 7 ((𝑥 = 𝑢𝑘 ∈ (𝑧 ∪ {𝑦})) → 𝐶 = 𝑢 / 𝑥𝐶)
2726prodeq2dv 15903 . . . . . 6 (𝑥 = 𝑢 → ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶 = ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶)
2821, 24, 27cbvmpt 5260 . . . . 5 (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) = (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶)
2928a1i 11 . . . 4 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) = (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶))
30 nfv 1909 . . . . . . . 8 𝑘((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴)
31 nfcsb1v 3914 . . . . . . . 8 𝑘𝑦 / 𝑘𝑢 / 𝑥𝐶
32 fprodcncf.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ Fin)
3332adantr 479 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → 𝐵 ∈ Fin)
34 simpr 483 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → 𝑧𝐵)
35 ssfi 9198 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝑧𝐵) → 𝑧 ∈ Fin)
3633, 34, 35syl2anc 582 . . . . . . . . . 10 ((𝜑𝑧𝐵) → 𝑧 ∈ Fin)
3736adantrr 715 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → 𝑧 ∈ Fin)
3837adantr 479 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑧 ∈ Fin)
39 vex 3465 . . . . . . . . 9 𝑦 ∈ V
4039a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑦 ∈ V)
41 eldifn 4124 . . . . . . . . . 10 (𝑦 ∈ (𝐵𝑧) → ¬ 𝑦𝑧)
4241ad2antll 727 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → ¬ 𝑦𝑧)
4342adantr 479 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → ¬ 𝑦𝑧)
44 simplll 773 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝜑)
45 simplr 767 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑢𝐴)
4634adantrr 715 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → 𝑧𝐵)
4746ad2antrr 724 . . . . . . . . . 10 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑧𝐵)
48 simpr 483 . . . . . . . . . 10 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑘𝑧)
4947, 48sseldd 3977 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑘𝐵)
50 nfv 1909 . . . . . . . . . . 11 𝑥(𝜑𝑢𝐴𝑘𝐵)
5123nfel1 2908 . . . . . . . . . . 11 𝑥𝑢 / 𝑥𝐶 ∈ ℂ
5250, 51nfim 1891 . . . . . . . . . 10 𝑥((𝜑𝑢𝐴𝑘𝐵) → 𝑢 / 𝑥𝐶 ∈ ℂ)
53 eleq1w 2808 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (𝑥𝐴𝑢𝐴))
54533anbi2d 1437 . . . . . . . . . . 11 (𝑥 = 𝑢 → ((𝜑𝑥𝐴𝑘𝐵) ↔ (𝜑𝑢𝐴𝑘𝐵)))
5525eleq1d 2810 . . . . . . . . . . 11 (𝑥 = 𝑢 → (𝐶 ∈ ℂ ↔ 𝑢 / 𝑥𝐶 ∈ ℂ))
5654, 55imbi12d 343 . . . . . . . . . 10 (𝑥 = 𝑢 → (((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑢𝐴𝑘𝐵) → 𝑢 / 𝑥𝐶 ∈ ℂ)))
57 fprodcncf.c . . . . . . . . . 10 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
5852, 56, 57chvarfv 2228 . . . . . . . . 9 ((𝜑𝑢𝐴𝑘𝐵) → 𝑢 / 𝑥𝐶 ∈ ℂ)
5944, 45, 49, 58syl3anc 1368 . . . . . . . 8 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑢 / 𝑥𝐶 ∈ ℂ)
60 csbeq1a 3903 . . . . . . . 8 (𝑘 = 𝑦𝑢 / 𝑥𝐶 = 𝑦 / 𝑘𝑢 / 𝑥𝐶)
61 simpll 765 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝜑)
62 eldifi 4123 . . . . . . . . . . 11 (𝑦 ∈ (𝐵𝑧) → 𝑦𝐵)
6362ad2antll 727 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → 𝑦𝐵)
6463adantr 479 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑦𝐵)
65 simpr 483 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑢𝐴)
66 simpll 765 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ 𝑢𝐴) → 𝜑)
67 simpr 483 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ 𝑢𝐴) → 𝑢𝐴)
68 simplr 767 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ 𝑢𝐴) → 𝑦𝐵)
69 nfv 1909 . . . . . . . . . . . 12 𝑘(𝜑𝑢𝐴𝑦𝐵)
70 nfcv 2891 . . . . . . . . . . . . 13 𝑘
7131, 70nfel 2906 . . . . . . . . . . . 12 𝑘𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ
7269, 71nfim 1891 . . . . . . . . . . 11 𝑘((𝜑𝑢𝐴𝑦𝐵) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)
73 eleq1w 2808 . . . . . . . . . . . . 13 (𝑘 = 𝑦 → (𝑘𝐵𝑦𝐵))
74733anbi3d 1438 . . . . . . . . . . . 12 (𝑘 = 𝑦 → ((𝜑𝑢𝐴𝑘𝐵) ↔ (𝜑𝑢𝐴𝑦𝐵)))
7560eleq1d 2810 . . . . . . . . . . . 12 (𝑘 = 𝑦 → (𝑢 / 𝑥𝐶 ∈ ℂ ↔ 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ))
7674, 75imbi12d 343 . . . . . . . . . . 11 (𝑘 = 𝑦 → (((𝜑𝑢𝐴𝑘𝐵) → 𝑢 / 𝑥𝐶 ∈ ℂ) ↔ ((𝜑𝑢𝐴𝑦𝐵) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)))
7772, 76, 58chvarfv 2228 . . . . . . . . . 10 ((𝜑𝑢𝐴𝑦𝐵) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)
7866, 67, 68, 77syl3anc 1368 . . . . . . . . 9 (((𝜑𝑦𝐵) ∧ 𝑢𝐴) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)
7961, 64, 65, 78syl21anc 836 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)
8030, 31, 38, 40, 43, 59, 60, 79fprodsplitsn 15969 . . . . . . 7 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶 = (∏𝑘𝑧 𝑢 / 𝑥𝐶 · 𝑦 / 𝑘𝑢 / 𝑥𝐶))
8180mpteq2dva 5249 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶) = (𝑢𝐴 ↦ (∏𝑘𝑧 𝑢 / 𝑥𝐶 · 𝑦 / 𝑘𝑢 / 𝑥𝐶)))
8281adantr 479 . . . . 5 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶) = (𝑢𝐴 ↦ (∏𝑘𝑧 𝑢 / 𝑥𝐶 · 𝑦 / 𝑘𝑢 / 𝑥𝐶)))
83 nfcv 2891 . . . . . . . . . . 11 𝑢𝑘𝑧 𝐶
84 nfcv 2891 . . . . . . . . . . . 12 𝑥𝑧
8584, 23nfcprod 15891 . . . . . . . . . . 11 𝑥𝑘𝑧 𝑢 / 𝑥𝐶
8625adantr 479 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑘𝑧) → 𝐶 = 𝑢 / 𝑥𝐶)
8786prodeq2dv 15903 . . . . . . . . . . 11 (𝑥 = 𝑢 → ∏𝑘𝑧 𝐶 = ∏𝑘𝑧 𝑢 / 𝑥𝐶)
8883, 85, 87cbvmpt 5260 . . . . . . . . . 10 (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) = (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶)
8988eqcomi 2734 . . . . . . . . 9 (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶) = (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶)
9089a1i 11 . . . . . . . 8 ((𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ) → (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶) = (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶))
91 id 22 . . . . . . . 8 ((𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ) → (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ))
9290, 91eqeltrd 2825 . . . . . . 7 ((𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ) → (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
9392adantl 480 . . . . . 6 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
94 nfv 1909 . . . . . . . . . 10 𝑘(𝜑𝑦𝐵)
95 nfcv 2891 . . . . . . . . . . . 12 𝑘𝐴
9695, 31nfmpt 5256 . . . . . . . . . . 11 𝑘(𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶)
97 nfcv 2891 . . . . . . . . . . 11 𝑘(𝐴cn→ℂ)
9896, 97nfel 2906 . . . . . . . . . 10 𝑘(𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ)
9994, 98nfim 1891 . . . . . . . . 9 𝑘((𝜑𝑦𝐵) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
10073anbi2d 628 . . . . . . . . . 10 (𝑘 = 𝑦 → ((𝜑𝑘𝐵) ↔ (𝜑𝑦𝐵)))
10160adantr 479 . . . . . . . . . . . 12 ((𝑘 = 𝑦𝑢𝐴) → 𝑢 / 𝑥𝐶 = 𝑦 / 𝑘𝑢 / 𝑥𝐶)
102101mpteq2dva 5249 . . . . . . . . . . 11 (𝑘 = 𝑦 → (𝑢𝐴𝑢 / 𝑥𝐶) = (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶))
103102eleq1d 2810 . . . . . . . . . 10 (𝑘 = 𝑦 → ((𝑢𝐴𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ)))
104100, 103imbi12d 343 . . . . . . . . 9 (𝑘 = 𝑦 → (((𝜑𝑘𝐵) → (𝑢𝐴𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ)) ↔ ((𝜑𝑦𝐵) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))))
105 nfcv 2891 . . . . . . . . . . 11 𝑢𝐶
106105, 23, 25cbvmpt 5260 . . . . . . . . . 10 (𝑥𝐴𝐶) = (𝑢𝐴𝑢 / 𝑥𝐶)
107 fprodcncf.cn . . . . . . . . . 10 ((𝜑𝑘𝐵) → (𝑥𝐴𝐶) ∈ (𝐴cn→ℂ))
108106, 107eqeltrrid 2830 . . . . . . . . 9 ((𝜑𝑘𝐵) → (𝑢𝐴𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
10999, 104, 108chvarfv 2228 . . . . . . . 8 ((𝜑𝑦𝐵) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
11063, 109syldan 589 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
111110adantr 479 . . . . . 6 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
11293, 111mulcncf 25418 . . . . 5 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴 ↦ (∏𝑘𝑧 𝑢 / 𝑥𝐶 · 𝑦 / 𝑘𝑢 / 𝑥𝐶)) ∈ (𝐴cn→ℂ))
11382, 112eqeltrd 2825 . . . 4 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
11429, 113eqeltrd 2825 . . 3 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) ∈ (𝐴cn→ℂ))
115114ex 411 . 2 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → ((𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ) → (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) ∈ (𝐴cn→ℂ)))
1163, 6, 9, 12, 20, 115, 32findcard2d 9191 1 (𝜑 → (𝑥𝐴 ↦ ∏𝑘𝐵 𝐶) ∈ (𝐴cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3461  csb 3889  cdif 3941  cun 3942  wss 3944  c0 4322  {csn 4630  cmpt 5232  (class class class)co 7419  Fincfn 8964  cc 11138  1c1 11141   · cmul 11145  cprod 15885  cnccncf 24840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-icc 13366  df-fz 13520  df-fzo 13663  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-prod 15886  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cn 23175  df-cnp 23176  df-tx 23510  df-hmeo 23703  df-xms 24270  df-ms 24271  df-tms 24272  df-cncf 24842
This theorem is referenced by:  etransclem18  45775  etransclem34  45791  etransclem46  45803
  Copyright terms: Public domain W3C validator