Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodcncf Structured version   Visualization version   GIF version

Theorem fprodcncf 43448
Description: The finite product of continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodcncf.a (𝜑𝐴 ⊆ ℂ)
fprodcncf.b (𝜑𝐵 ∈ Fin)
fprodcncf.c ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
fprodcncf.cn ((𝜑𝑘𝐵) → (𝑥𝐴𝐶) ∈ (𝐴cn→ℂ))
Assertion
Ref Expression
fprodcncf (𝜑 → (𝑥𝐴 ↦ ∏𝑘𝐵 𝐶) ∈ (𝐴cn→ℂ))
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐶(𝑥,𝑘)

Proof of Theorem fprodcncf
Dummy variables 𝑢 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 15628 . . . 4 (𝑤 = ∅ → ∏𝑘𝑤 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
21mpteq2dv 5177 . . 3 (𝑤 = ∅ → (𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) = (𝑥𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶))
32eleq1d 2824 . 2 (𝑤 = ∅ → ((𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶) ∈ (𝐴cn→ℂ)))
4 prodeq1 15628 . . . 4 (𝑤 = 𝑧 → ∏𝑘𝑤 𝐶 = ∏𝑘𝑧 𝐶)
54mpteq2dv 5177 . . 3 (𝑤 = 𝑧 → (𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) = (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶))
65eleq1d 2824 . 2 (𝑤 = 𝑧 → ((𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)))
7 prodeq1 15628 . . . 4 (𝑤 = (𝑧 ∪ {𝑦}) → ∏𝑘𝑤 𝐶 = ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶)
87mpteq2dv 5177 . . 3 (𝑤 = (𝑧 ∪ {𝑦}) → (𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) = (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶))
98eleq1d 2824 . 2 (𝑤 = (𝑧 ∪ {𝑦}) → ((𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) ∈ (𝐴cn→ℂ)))
10 prodeq1 15628 . . . 4 (𝑤 = 𝐵 → ∏𝑘𝑤 𝐶 = ∏𝑘𝐵 𝐶)
1110mpteq2dv 5177 . . 3 (𝑤 = 𝐵 → (𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) = (𝑥𝐴 ↦ ∏𝑘𝐵 𝐶))
1211eleq1d 2824 . 2 (𝑤 = 𝐵 → ((𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴 ↦ ∏𝑘𝐵 𝐶) ∈ (𝐴cn→ℂ)))
13 prod0 15662 . . . . 5 𝑘 ∈ ∅ 𝐶 = 1
1413a1i 11 . . . 4 (𝜑 → ∏𝑘 ∈ ∅ 𝐶 = 1)
1514mpteq2dv 5177 . . 3 (𝜑 → (𝑥𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶) = (𝑥𝐴 ↦ 1))
16 fprodcncf.a . . . 4 (𝜑𝐴 ⊆ ℂ)
17 1cnd 10979 . . . 4 (𝜑 → 1 ∈ ℂ)
18 ssidd 3945 . . . 4 (𝜑 → ℂ ⊆ ℂ)
1916, 17, 18constcncfg 43420 . . 3 (𝜑 → (𝑥𝐴 ↦ 1) ∈ (𝐴cn→ℂ))
2015, 19eqeltrd 2840 . 2 (𝜑 → (𝑥𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶) ∈ (𝐴cn→ℂ))
21 nfcv 2908 . . . . . 6 𝑢𝑘 ∈ (𝑧 ∪ {𝑦})𝐶
22 nfcv 2908 . . . . . . 7 𝑥(𝑧 ∪ {𝑦})
23 nfcsb1v 3858 . . . . . . 7 𝑥𝑢 / 𝑥𝐶
2422, 23nfcprod 15630 . . . . . 6 𝑥𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶
25 csbeq1a 3847 . . . . . . . 8 (𝑥 = 𝑢𝐶 = 𝑢 / 𝑥𝐶)
2625adantr 481 . . . . . . 7 ((𝑥 = 𝑢𝑘 ∈ (𝑧 ∪ {𝑦})) → 𝐶 = 𝑢 / 𝑥𝐶)
2726prodeq2dv 15642 . . . . . 6 (𝑥 = 𝑢 → ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶 = ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶)
2821, 24, 27cbvmpt 5186 . . . . 5 (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) = (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶)
2928a1i 11 . . . 4 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) = (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶))
30 nfv 1918 . . . . . . . 8 𝑘((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴)
31 nfcsb1v 3858 . . . . . . . 8 𝑘𝑦 / 𝑘𝑢 / 𝑥𝐶
32 fprodcncf.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ Fin)
3332adantr 481 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → 𝐵 ∈ Fin)
34 simpr 485 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → 𝑧𝐵)
35 ssfi 8965 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝑧𝐵) → 𝑧 ∈ Fin)
3633, 34, 35syl2anc 584 . . . . . . . . . 10 ((𝜑𝑧𝐵) → 𝑧 ∈ Fin)
3736adantrr 714 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → 𝑧 ∈ Fin)
3837adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑧 ∈ Fin)
39 vex 3437 . . . . . . . . 9 𝑦 ∈ V
4039a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑦 ∈ V)
41 eldifn 4063 . . . . . . . . . 10 (𝑦 ∈ (𝐵𝑧) → ¬ 𝑦𝑧)
4241ad2antll 726 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → ¬ 𝑦𝑧)
4342adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → ¬ 𝑦𝑧)
44 simplll 772 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝜑)
45 simplr 766 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑢𝐴)
4634adantrr 714 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → 𝑧𝐵)
4746ad2antrr 723 . . . . . . . . . 10 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑧𝐵)
48 simpr 485 . . . . . . . . . 10 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑘𝑧)
4947, 48sseldd 3923 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑘𝐵)
50 nfv 1918 . . . . . . . . . . 11 𝑥(𝜑𝑢𝐴𝑘𝐵)
5123nfel1 2924 . . . . . . . . . . 11 𝑥𝑢 / 𝑥𝐶 ∈ ℂ
5250, 51nfim 1900 . . . . . . . . . 10 𝑥((𝜑𝑢𝐴𝑘𝐵) → 𝑢 / 𝑥𝐶 ∈ ℂ)
53 eleq1w 2822 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (𝑥𝐴𝑢𝐴))
54533anbi2d 1440 . . . . . . . . . . 11 (𝑥 = 𝑢 → ((𝜑𝑥𝐴𝑘𝐵) ↔ (𝜑𝑢𝐴𝑘𝐵)))
5525eleq1d 2824 . . . . . . . . . . 11 (𝑥 = 𝑢 → (𝐶 ∈ ℂ ↔ 𝑢 / 𝑥𝐶 ∈ ℂ))
5654, 55imbi12d 345 . . . . . . . . . 10 (𝑥 = 𝑢 → (((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑢𝐴𝑘𝐵) → 𝑢 / 𝑥𝐶 ∈ ℂ)))
57 fprodcncf.c . . . . . . . . . 10 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
5852, 56, 57chvarfv 2234 . . . . . . . . 9 ((𝜑𝑢𝐴𝑘𝐵) → 𝑢 / 𝑥𝐶 ∈ ℂ)
5944, 45, 49, 58syl3anc 1370 . . . . . . . 8 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑢 / 𝑥𝐶 ∈ ℂ)
60 csbeq1a 3847 . . . . . . . 8 (𝑘 = 𝑦𝑢 / 𝑥𝐶 = 𝑦 / 𝑘𝑢 / 𝑥𝐶)
61 simpll 764 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝜑)
62 eldifi 4062 . . . . . . . . . . 11 (𝑦 ∈ (𝐵𝑧) → 𝑦𝐵)
6362ad2antll 726 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → 𝑦𝐵)
6463adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑦𝐵)
65 simpr 485 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑢𝐴)
66 simpll 764 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ 𝑢𝐴) → 𝜑)
67 simpr 485 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ 𝑢𝐴) → 𝑢𝐴)
68 simplr 766 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ 𝑢𝐴) → 𝑦𝐵)
69 nfv 1918 . . . . . . . . . . . 12 𝑘(𝜑𝑢𝐴𝑦𝐵)
70 nfcv 2908 . . . . . . . . . . . . 13 𝑘
7131, 70nfel 2922 . . . . . . . . . . . 12 𝑘𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ
7269, 71nfim 1900 . . . . . . . . . . 11 𝑘((𝜑𝑢𝐴𝑦𝐵) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)
73 eleq1w 2822 . . . . . . . . . . . . 13 (𝑘 = 𝑦 → (𝑘𝐵𝑦𝐵))
74733anbi3d 1441 . . . . . . . . . . . 12 (𝑘 = 𝑦 → ((𝜑𝑢𝐴𝑘𝐵) ↔ (𝜑𝑢𝐴𝑦𝐵)))
7560eleq1d 2824 . . . . . . . . . . . 12 (𝑘 = 𝑦 → (𝑢 / 𝑥𝐶 ∈ ℂ ↔ 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ))
7674, 75imbi12d 345 . . . . . . . . . . 11 (𝑘 = 𝑦 → (((𝜑𝑢𝐴𝑘𝐵) → 𝑢 / 𝑥𝐶 ∈ ℂ) ↔ ((𝜑𝑢𝐴𝑦𝐵) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)))
7772, 76, 58chvarfv 2234 . . . . . . . . . 10 ((𝜑𝑢𝐴𝑦𝐵) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)
7866, 67, 68, 77syl3anc 1370 . . . . . . . . 9 (((𝜑𝑦𝐵) ∧ 𝑢𝐴) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)
7961, 64, 65, 78syl21anc 835 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)
8030, 31, 38, 40, 43, 59, 60, 79fprodsplitsn 15708 . . . . . . 7 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶 = (∏𝑘𝑧 𝑢 / 𝑥𝐶 · 𝑦 / 𝑘𝑢 / 𝑥𝐶))
8180mpteq2dva 5175 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶) = (𝑢𝐴 ↦ (∏𝑘𝑧 𝑢 / 𝑥𝐶 · 𝑦 / 𝑘𝑢 / 𝑥𝐶)))
8281adantr 481 . . . . 5 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶) = (𝑢𝐴 ↦ (∏𝑘𝑧 𝑢 / 𝑥𝐶 · 𝑦 / 𝑘𝑢 / 𝑥𝐶)))
83 nfcv 2908 . . . . . . . . . . 11 𝑢𝑘𝑧 𝐶
84 nfcv 2908 . . . . . . . . . . . 12 𝑥𝑧
8584, 23nfcprod 15630 . . . . . . . . . . 11 𝑥𝑘𝑧 𝑢 / 𝑥𝐶
8625adantr 481 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑘𝑧) → 𝐶 = 𝑢 / 𝑥𝐶)
8786prodeq2dv 15642 . . . . . . . . . . 11 (𝑥 = 𝑢 → ∏𝑘𝑧 𝐶 = ∏𝑘𝑧 𝑢 / 𝑥𝐶)
8883, 85, 87cbvmpt 5186 . . . . . . . . . 10 (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) = (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶)
8988eqcomi 2748 . . . . . . . . 9 (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶) = (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶)
9089a1i 11 . . . . . . . 8 ((𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ) → (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶) = (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶))
91 id 22 . . . . . . . 8 ((𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ) → (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ))
9290, 91eqeltrd 2840 . . . . . . 7 ((𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ) → (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
9392adantl 482 . . . . . 6 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
94 nfv 1918 . . . . . . . . . 10 𝑘(𝜑𝑦𝐵)
95 nfcv 2908 . . . . . . . . . . . 12 𝑘𝐴
9695, 31nfmpt 5182 . . . . . . . . . . 11 𝑘(𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶)
97 nfcv 2908 . . . . . . . . . . 11 𝑘(𝐴cn→ℂ)
9896, 97nfel 2922 . . . . . . . . . 10 𝑘(𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ)
9994, 98nfim 1900 . . . . . . . . 9 𝑘((𝜑𝑦𝐵) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
10073anbi2d 629 . . . . . . . . . 10 (𝑘 = 𝑦 → ((𝜑𝑘𝐵) ↔ (𝜑𝑦𝐵)))
10160adantr 481 . . . . . . . . . . . 12 ((𝑘 = 𝑦𝑢𝐴) → 𝑢 / 𝑥𝐶 = 𝑦 / 𝑘𝑢 / 𝑥𝐶)
102101mpteq2dva 5175 . . . . . . . . . . 11 (𝑘 = 𝑦 → (𝑢𝐴𝑢 / 𝑥𝐶) = (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶))
103102eleq1d 2824 . . . . . . . . . 10 (𝑘 = 𝑦 → ((𝑢𝐴𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ)))
104100, 103imbi12d 345 . . . . . . . . 9 (𝑘 = 𝑦 → (((𝜑𝑘𝐵) → (𝑢𝐴𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ)) ↔ ((𝜑𝑦𝐵) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))))
105 nfcv 2908 . . . . . . . . . . 11 𝑢𝐶
106105, 23, 25cbvmpt 5186 . . . . . . . . . 10 (𝑥𝐴𝐶) = (𝑢𝐴𝑢 / 𝑥𝐶)
107 fprodcncf.cn . . . . . . . . . 10 ((𝜑𝑘𝐵) → (𝑥𝐴𝐶) ∈ (𝐴cn→ℂ))
108106, 107eqeltrrid 2845 . . . . . . . . 9 ((𝜑𝑘𝐵) → (𝑢𝐴𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
10999, 104, 108chvarfv 2234 . . . . . . . 8 ((𝜑𝑦𝐵) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
11063, 109syldan 591 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
111110adantr 481 . . . . . 6 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
11293, 111mulcncf 24619 . . . . 5 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴 ↦ (∏𝑘𝑧 𝑢 / 𝑥𝐶 · 𝑦 / 𝑘𝑢 / 𝑥𝐶)) ∈ (𝐴cn→ℂ))
11382, 112eqeltrd 2840 . . . 4 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
11429, 113eqeltrd 2840 . . 3 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) ∈ (𝐴cn→ℂ))
115114ex 413 . 2 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → ((𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ) → (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) ∈ (𝐴cn→ℂ)))
1163, 6, 9, 12, 20, 115, 32findcard2d 8958 1 (𝜑 → (𝑥𝐴 ↦ ∏𝑘𝐵 𝐶) ∈ (𝐴cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2107  Vcvv 3433  csb 3833  cdif 3885  cun 3886  wss 3888  c0 4257  {csn 4562  cmpt 5158  (class class class)co 7284  Fincfn 8742  cc 10878  1c1 10881   · cmul 10885  cprod 15624  cnccncf 24048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-map 8626  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-icc 13095  df-fz 13249  df-fzo 13392  df-seq 13731  df-exp 13792  df-hash 14054  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-clim 15206  df-prod 15625  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cn 22387  df-cnp 22388  df-tx 22722  df-hmeo 22915  df-xms 23482  df-ms 23483  df-tms 23484  df-cncf 24050
This theorem is referenced by:  etransclem18  43800  etransclem34  43816  etransclem46  43828
  Copyright terms: Public domain W3C validator