Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodcncf Structured version   Visualization version   GIF version

Theorem fprodcncf 45898
Description: The finite product of continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodcncf.a (𝜑𝐴 ⊆ ℂ)
fprodcncf.b (𝜑𝐵 ∈ Fin)
fprodcncf.c ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
fprodcncf.cn ((𝜑𝑘𝐵) → (𝑥𝐴𝐶) ∈ (𝐴cn→ℂ))
Assertion
Ref Expression
fprodcncf (𝜑 → (𝑥𝐴 ↦ ∏𝑘𝐵 𝐶) ∈ (𝐴cn→ℂ))
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐶(𝑥,𝑘)

Proof of Theorem fprodcncf
Dummy variables 𝑢 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 15873 . . . 4 (𝑤 = ∅ → ∏𝑘𝑤 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
21mpteq2dv 5201 . . 3 (𝑤 = ∅ → (𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) = (𝑥𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶))
32eleq1d 2813 . 2 (𝑤 = ∅ → ((𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶) ∈ (𝐴cn→ℂ)))
4 prodeq1 15873 . . . 4 (𝑤 = 𝑧 → ∏𝑘𝑤 𝐶 = ∏𝑘𝑧 𝐶)
54mpteq2dv 5201 . . 3 (𝑤 = 𝑧 → (𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) = (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶))
65eleq1d 2813 . 2 (𝑤 = 𝑧 → ((𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)))
7 prodeq1 15873 . . . 4 (𝑤 = (𝑧 ∪ {𝑦}) → ∏𝑘𝑤 𝐶 = ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶)
87mpteq2dv 5201 . . 3 (𝑤 = (𝑧 ∪ {𝑦}) → (𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) = (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶))
98eleq1d 2813 . 2 (𝑤 = (𝑧 ∪ {𝑦}) → ((𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) ∈ (𝐴cn→ℂ)))
10 prodeq1 15873 . . . 4 (𝑤 = 𝐵 → ∏𝑘𝑤 𝐶 = ∏𝑘𝐵 𝐶)
1110mpteq2dv 5201 . . 3 (𝑤 = 𝐵 → (𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) = (𝑥𝐴 ↦ ∏𝑘𝐵 𝐶))
1211eleq1d 2813 . 2 (𝑤 = 𝐵 → ((𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴 ↦ ∏𝑘𝐵 𝐶) ∈ (𝐴cn→ℂ)))
13 prod0 15909 . . . . 5 𝑘 ∈ ∅ 𝐶 = 1
1413a1i 11 . . . 4 (𝜑 → ∏𝑘 ∈ ∅ 𝐶 = 1)
1514mpteq2dv 5201 . . 3 (𝜑 → (𝑥𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶) = (𝑥𝐴 ↦ 1))
16 fprodcncf.a . . . 4 (𝜑𝐴 ⊆ ℂ)
17 1cnd 11169 . . . 4 (𝜑 → 1 ∈ ℂ)
18 ssidd 3970 . . . 4 (𝜑 → ℂ ⊆ ℂ)
1916, 17, 18constcncfg 45870 . . 3 (𝜑 → (𝑥𝐴 ↦ 1) ∈ (𝐴cn→ℂ))
2015, 19eqeltrd 2828 . 2 (𝜑 → (𝑥𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶) ∈ (𝐴cn→ℂ))
21 nfcv 2891 . . . . . 6 𝑢𝑘 ∈ (𝑧 ∪ {𝑦})𝐶
22 nfcv 2891 . . . . . . 7 𝑥(𝑧 ∪ {𝑦})
23 nfcsb1v 3886 . . . . . . 7 𝑥𝑢 / 𝑥𝐶
2422, 23nfcprod 15875 . . . . . 6 𝑥𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶
25 csbeq1a 3876 . . . . . . . 8 (𝑥 = 𝑢𝐶 = 𝑢 / 𝑥𝐶)
2625adantr 480 . . . . . . 7 ((𝑥 = 𝑢𝑘 ∈ (𝑧 ∪ {𝑦})) → 𝐶 = 𝑢 / 𝑥𝐶)
2726prodeq2dv 15888 . . . . . 6 (𝑥 = 𝑢 → ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶 = ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶)
2821, 24, 27cbvmpt 5209 . . . . 5 (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) = (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶)
2928a1i 11 . . . 4 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) = (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶))
30 nfv 1914 . . . . . . . 8 𝑘((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴)
31 nfcsb1v 3886 . . . . . . . 8 𝑘𝑦 / 𝑘𝑢 / 𝑥𝐶
32 fprodcncf.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ Fin)
3332adantr 480 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → 𝐵 ∈ Fin)
34 simpr 484 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → 𝑧𝐵)
35 ssfi 9137 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝑧𝐵) → 𝑧 ∈ Fin)
3633, 34, 35syl2anc 584 . . . . . . . . . 10 ((𝜑𝑧𝐵) → 𝑧 ∈ Fin)
3736adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → 𝑧 ∈ Fin)
3837adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑧 ∈ Fin)
39 vex 3451 . . . . . . . . 9 𝑦 ∈ V
4039a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑦 ∈ V)
41 eldifn 4095 . . . . . . . . . 10 (𝑦 ∈ (𝐵𝑧) → ¬ 𝑦𝑧)
4241ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → ¬ 𝑦𝑧)
4342adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → ¬ 𝑦𝑧)
44 simplll 774 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝜑)
45 simplr 768 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑢𝐴)
4634adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → 𝑧𝐵)
4746ad2antrr 726 . . . . . . . . . 10 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑧𝐵)
48 simpr 484 . . . . . . . . . 10 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑘𝑧)
4947, 48sseldd 3947 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑘𝐵)
50 nfv 1914 . . . . . . . . . . 11 𝑥(𝜑𝑢𝐴𝑘𝐵)
5123nfel1 2908 . . . . . . . . . . 11 𝑥𝑢 / 𝑥𝐶 ∈ ℂ
5250, 51nfim 1896 . . . . . . . . . 10 𝑥((𝜑𝑢𝐴𝑘𝐵) → 𝑢 / 𝑥𝐶 ∈ ℂ)
53 eleq1w 2811 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (𝑥𝐴𝑢𝐴))
54533anbi2d 1443 . . . . . . . . . . 11 (𝑥 = 𝑢 → ((𝜑𝑥𝐴𝑘𝐵) ↔ (𝜑𝑢𝐴𝑘𝐵)))
5525eleq1d 2813 . . . . . . . . . . 11 (𝑥 = 𝑢 → (𝐶 ∈ ℂ ↔ 𝑢 / 𝑥𝐶 ∈ ℂ))
5654, 55imbi12d 344 . . . . . . . . . 10 (𝑥 = 𝑢 → (((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑢𝐴𝑘𝐵) → 𝑢 / 𝑥𝐶 ∈ ℂ)))
57 fprodcncf.c . . . . . . . . . 10 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
5852, 56, 57chvarfv 2241 . . . . . . . . 9 ((𝜑𝑢𝐴𝑘𝐵) → 𝑢 / 𝑥𝐶 ∈ ℂ)
5944, 45, 49, 58syl3anc 1373 . . . . . . . 8 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑢 / 𝑥𝐶 ∈ ℂ)
60 csbeq1a 3876 . . . . . . . 8 (𝑘 = 𝑦𝑢 / 𝑥𝐶 = 𝑦 / 𝑘𝑢 / 𝑥𝐶)
61 simpll 766 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝜑)
62 eldifi 4094 . . . . . . . . . . 11 (𝑦 ∈ (𝐵𝑧) → 𝑦𝐵)
6362ad2antll 729 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → 𝑦𝐵)
6463adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑦𝐵)
65 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑢𝐴)
66 simpll 766 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ 𝑢𝐴) → 𝜑)
67 simpr 484 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ 𝑢𝐴) → 𝑢𝐴)
68 simplr 768 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ 𝑢𝐴) → 𝑦𝐵)
69 nfv 1914 . . . . . . . . . . . 12 𝑘(𝜑𝑢𝐴𝑦𝐵)
70 nfcv 2891 . . . . . . . . . . . . 13 𝑘
7131, 70nfel 2906 . . . . . . . . . . . 12 𝑘𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ
7269, 71nfim 1896 . . . . . . . . . . 11 𝑘((𝜑𝑢𝐴𝑦𝐵) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)
73 eleq1w 2811 . . . . . . . . . . . . 13 (𝑘 = 𝑦 → (𝑘𝐵𝑦𝐵))
74733anbi3d 1444 . . . . . . . . . . . 12 (𝑘 = 𝑦 → ((𝜑𝑢𝐴𝑘𝐵) ↔ (𝜑𝑢𝐴𝑦𝐵)))
7560eleq1d 2813 . . . . . . . . . . . 12 (𝑘 = 𝑦 → (𝑢 / 𝑥𝐶 ∈ ℂ ↔ 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ))
7674, 75imbi12d 344 . . . . . . . . . . 11 (𝑘 = 𝑦 → (((𝜑𝑢𝐴𝑘𝐵) → 𝑢 / 𝑥𝐶 ∈ ℂ) ↔ ((𝜑𝑢𝐴𝑦𝐵) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)))
7772, 76, 58chvarfv 2241 . . . . . . . . . 10 ((𝜑𝑢𝐴𝑦𝐵) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)
7866, 67, 68, 77syl3anc 1373 . . . . . . . . 9 (((𝜑𝑦𝐵) ∧ 𝑢𝐴) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)
7961, 64, 65, 78syl21anc 837 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)
8030, 31, 38, 40, 43, 59, 60, 79fprodsplitsn 15955 . . . . . . 7 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶 = (∏𝑘𝑧 𝑢 / 𝑥𝐶 · 𝑦 / 𝑘𝑢 / 𝑥𝐶))
8180mpteq2dva 5200 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶) = (𝑢𝐴 ↦ (∏𝑘𝑧 𝑢 / 𝑥𝐶 · 𝑦 / 𝑘𝑢 / 𝑥𝐶)))
8281adantr 480 . . . . 5 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶) = (𝑢𝐴 ↦ (∏𝑘𝑧 𝑢 / 𝑥𝐶 · 𝑦 / 𝑘𝑢 / 𝑥𝐶)))
83 nfcv 2891 . . . . . . . . . . 11 𝑢𝑘𝑧 𝐶
84 nfcv 2891 . . . . . . . . . . . 12 𝑥𝑧
8584, 23nfcprod 15875 . . . . . . . . . . 11 𝑥𝑘𝑧 𝑢 / 𝑥𝐶
8625adantr 480 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑘𝑧) → 𝐶 = 𝑢 / 𝑥𝐶)
8786prodeq2dv 15888 . . . . . . . . . . 11 (𝑥 = 𝑢 → ∏𝑘𝑧 𝐶 = ∏𝑘𝑧 𝑢 / 𝑥𝐶)
8883, 85, 87cbvmpt 5209 . . . . . . . . . 10 (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) = (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶)
8988eqcomi 2738 . . . . . . . . 9 (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶) = (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶)
9089a1i 11 . . . . . . . 8 ((𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ) → (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶) = (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶))
91 id 22 . . . . . . . 8 ((𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ) → (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ))
9290, 91eqeltrd 2828 . . . . . . 7 ((𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ) → (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
9392adantl 481 . . . . . 6 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
94 nfv 1914 . . . . . . . . . 10 𝑘(𝜑𝑦𝐵)
95 nfcv 2891 . . . . . . . . . . . 12 𝑘𝐴
9695, 31nfmpt 5205 . . . . . . . . . . 11 𝑘(𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶)
97 nfcv 2891 . . . . . . . . . . 11 𝑘(𝐴cn→ℂ)
9896, 97nfel 2906 . . . . . . . . . 10 𝑘(𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ)
9994, 98nfim 1896 . . . . . . . . 9 𝑘((𝜑𝑦𝐵) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
10073anbi2d 630 . . . . . . . . . 10 (𝑘 = 𝑦 → ((𝜑𝑘𝐵) ↔ (𝜑𝑦𝐵)))
10160adantr 480 . . . . . . . . . . . 12 ((𝑘 = 𝑦𝑢𝐴) → 𝑢 / 𝑥𝐶 = 𝑦 / 𝑘𝑢 / 𝑥𝐶)
102101mpteq2dva 5200 . . . . . . . . . . 11 (𝑘 = 𝑦 → (𝑢𝐴𝑢 / 𝑥𝐶) = (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶))
103102eleq1d 2813 . . . . . . . . . 10 (𝑘 = 𝑦 → ((𝑢𝐴𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ)))
104100, 103imbi12d 344 . . . . . . . . 9 (𝑘 = 𝑦 → (((𝜑𝑘𝐵) → (𝑢𝐴𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ)) ↔ ((𝜑𝑦𝐵) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))))
105 nfcv 2891 . . . . . . . . . . 11 𝑢𝐶
106105, 23, 25cbvmpt 5209 . . . . . . . . . 10 (𝑥𝐴𝐶) = (𝑢𝐴𝑢 / 𝑥𝐶)
107 fprodcncf.cn . . . . . . . . . 10 ((𝜑𝑘𝐵) → (𝑥𝐴𝐶) ∈ (𝐴cn→ℂ))
108106, 107eqeltrrid 2833 . . . . . . . . 9 ((𝜑𝑘𝐵) → (𝑢𝐴𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
10999, 104, 108chvarfv 2241 . . . . . . . 8 ((𝜑𝑦𝐵) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
11063, 109syldan 591 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
111110adantr 480 . . . . . 6 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
11293, 111mulcncf 25346 . . . . 5 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴 ↦ (∏𝑘𝑧 𝑢 / 𝑥𝐶 · 𝑦 / 𝑘𝑢 / 𝑥𝐶)) ∈ (𝐴cn→ℂ))
11382, 112eqeltrd 2828 . . . 4 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
11429, 113eqeltrd 2828 . . 3 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) ∈ (𝐴cn→ℂ))
115114ex 412 . 2 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → ((𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ) → (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) ∈ (𝐴cn→ℂ)))
1163, 6, 9, 12, 20, 115, 32findcard2d 9130 1 (𝜑 → (𝑥𝐴 ↦ ∏𝑘𝐵 𝐶) ∈ (𝐴cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  csb 3862  cdif 3911  cun 3912  wss 3914  c0 4296  {csn 4589  cmpt 5188  (class class class)co 7387  Fincfn 8918  cc 11066  1c1 11069   · cmul 11073  cprod 15869  cnccncf 24769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-prod 15870  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cn 23114  df-cnp 23115  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771
This theorem is referenced by:  etransclem18  46250  etransclem34  46266  etransclem46  46278
  Copyright terms: Public domain W3C validator