Step | Hyp | Ref
| Expression |
1 | | prodeq1 15628 |
. . . 4
⊢ (𝑤 = ∅ → ∏𝑘 ∈ 𝑤 𝐶 = ∏𝑘 ∈ ∅ 𝐶) |
2 | 1 | mpteq2dv 5177 |
. . 3
⊢ (𝑤 = ∅ → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶)) |
3 | 2 | eleq1d 2824 |
. 2
⊢ (𝑤 = ∅ → ((𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑤 𝐶) ∈ (𝐴–cn→ℂ) ↔ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶) ∈ (𝐴–cn→ℂ))) |
4 | | prodeq1 15628 |
. . . 4
⊢ (𝑤 = 𝑧 → ∏𝑘 ∈ 𝑤 𝐶 = ∏𝑘 ∈ 𝑧 𝐶) |
5 | 4 | mpteq2dv 5177 |
. . 3
⊢ (𝑤 = 𝑧 → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶)) |
6 | 5 | eleq1d 2824 |
. 2
⊢ (𝑤 = 𝑧 → ((𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑤 𝐶) ∈ (𝐴–cn→ℂ) ↔ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ))) |
7 | | prodeq1 15628 |
. . . 4
⊢ (𝑤 = (𝑧 ∪ {𝑦}) → ∏𝑘 ∈ 𝑤 𝐶 = ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) |
8 | 7 | mpteq2dv 5177 |
. . 3
⊢ (𝑤 = (𝑧 ∪ {𝑦}) → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶)) |
9 | 8 | eleq1d 2824 |
. 2
⊢ (𝑤 = (𝑧 ∪ {𝑦}) → ((𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑤 𝐶) ∈ (𝐴–cn→ℂ) ↔ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) ∈ (𝐴–cn→ℂ))) |
10 | | prodeq1 15628 |
. . . 4
⊢ (𝑤 = 𝐵 → ∏𝑘 ∈ 𝑤 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
11 | 10 | mpteq2dv 5177 |
. . 3
⊢ (𝑤 = 𝐵 → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝐵 𝐶)) |
12 | 11 | eleq1d 2824 |
. 2
⊢ (𝑤 = 𝐵 → ((𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑤 𝐶) ∈ (𝐴–cn→ℂ) ↔ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝐵 𝐶) ∈ (𝐴–cn→ℂ))) |
13 | | prod0 15662 |
. . . . 5
⊢
∏𝑘 ∈
∅ 𝐶 =
1 |
14 | 13 | a1i 11 |
. . . 4
⊢ (𝜑 → ∏𝑘 ∈ ∅ 𝐶 = 1) |
15 | 14 | mpteq2dv 5177 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶) = (𝑥 ∈ 𝐴 ↦ 1)) |
16 | | fprodcncf.a |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
17 | | 1cnd 10979 |
. . . 4
⊢ (𝜑 → 1 ∈
ℂ) |
18 | | ssidd 3945 |
. . . 4
⊢ (𝜑 → ℂ ⊆
ℂ) |
19 | 16, 17, 18 | constcncfg 43420 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 1) ∈ (𝐴–cn→ℂ)) |
20 | 15, 19 | eqeltrd 2840 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶) ∈ (𝐴–cn→ℂ)) |
21 | | nfcv 2908 |
. . . . . 6
⊢
Ⅎ𝑢∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶 |
22 | | nfcv 2908 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑧 ∪ {𝑦}) |
23 | | nfcsb1v 3858 |
. . . . . . 7
⊢
Ⅎ𝑥⦋𝑢 / 𝑥⦌𝐶 |
24 | 22, 23 | nfcprod 15630 |
. . . . . 6
⊢
Ⅎ𝑥∏𝑘 ∈ (𝑧 ∪ {𝑦})⦋𝑢 / 𝑥⦌𝐶 |
25 | | csbeq1a 3847 |
. . . . . . . 8
⊢ (𝑥 = 𝑢 → 𝐶 = ⦋𝑢 / 𝑥⦌𝐶) |
26 | 25 | adantr 481 |
. . . . . . 7
⊢ ((𝑥 = 𝑢 ∧ 𝑘 ∈ (𝑧 ∪ {𝑦})) → 𝐶 = ⦋𝑢 / 𝑥⦌𝐶) |
27 | 26 | prodeq2dv 15642 |
. . . . . 6
⊢ (𝑥 = 𝑢 → ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶 = ∏𝑘 ∈ (𝑧 ∪ {𝑦})⦋𝑢 / 𝑥⦌𝐶) |
28 | 21, 24, 27 | cbvmpt 5186 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) = (𝑢 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})⦋𝑢 / 𝑥⦌𝐶) |
29 | 28 | a1i 11 |
. . . 4
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ)) → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) = (𝑢 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})⦋𝑢 / 𝑥⦌𝐶)) |
30 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑘((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) |
31 | | nfcsb1v 3858 |
. . . . . . . 8
⊢
Ⅎ𝑘⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶 |
32 | | fprodcncf.b |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ Fin) |
33 | 32 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → 𝐵 ∈ Fin) |
34 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → 𝑧 ⊆ 𝐵) |
35 | | ssfi 8965 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ Fin ∧ 𝑧 ⊆ 𝐵) → 𝑧 ∈ Fin) |
36 | 33, 34, 35 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → 𝑧 ∈ Fin) |
37 | 36 | adantrr 714 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) → 𝑧 ∈ Fin) |
38 | 37 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) → 𝑧 ∈ Fin) |
39 | | vex 3437 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
40 | 39 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) → 𝑦 ∈ V) |
41 | | eldifn 4063 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐵 ∖ 𝑧) → ¬ 𝑦 ∈ 𝑧) |
42 | 41 | ad2antll 726 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) → ¬ 𝑦 ∈ 𝑧) |
43 | 42 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) → ¬ 𝑦 ∈ 𝑧) |
44 | | simplll 772 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) ∧ 𝑘 ∈ 𝑧) → 𝜑) |
45 | | simplr 766 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) ∧ 𝑘 ∈ 𝑧) → 𝑢 ∈ 𝐴) |
46 | 34 | adantrr 714 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) → 𝑧 ⊆ 𝐵) |
47 | 46 | ad2antrr 723 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) ∧ 𝑘 ∈ 𝑧) → 𝑧 ⊆ 𝐵) |
48 | | simpr 485 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) ∧ 𝑘 ∈ 𝑧) → 𝑘 ∈ 𝑧) |
49 | 47, 48 | sseldd 3923 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) ∧ 𝑘 ∈ 𝑧) → 𝑘 ∈ 𝐵) |
50 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) |
51 | 23 | nfel1 2924 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ |
52 | 50, 51 | nfim 1900 |
. . . . . . . . . 10
⊢
Ⅎ𝑥((𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → ⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ) |
53 | | eleq1w 2822 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑢 → (𝑥 ∈ 𝐴 ↔ 𝑢 ∈ 𝐴)) |
54 | 53 | 3anbi2d 1440 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑢 → ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) ↔ (𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵))) |
55 | 25 | eleq1d 2824 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑢 → (𝐶 ∈ ℂ ↔ ⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ)) |
56 | 54, 55 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑢 → (((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) ↔ ((𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → ⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ))) |
57 | | fprodcncf.c |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
58 | 52, 56, 57 | chvarfv 2234 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → ⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ) |
59 | 44, 45, 49, 58 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) ∧ 𝑘 ∈ 𝑧) → ⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ) |
60 | | csbeq1a 3847 |
. . . . . . . 8
⊢ (𝑘 = 𝑦 → ⦋𝑢 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶) |
61 | | simpll 764 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) → 𝜑) |
62 | | eldifi 4062 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (𝐵 ∖ 𝑧) → 𝑦 ∈ 𝐵) |
63 | 62 | ad2antll 726 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) → 𝑦 ∈ 𝐵) |
64 | 63 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) → 𝑦 ∈ 𝐵) |
65 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ 𝐴) |
66 | | simpll 764 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ 𝐴) → 𝜑) |
67 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ 𝐴) |
68 | | simplr 766 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ 𝐴) → 𝑦 ∈ 𝐵) |
69 | | nfv 1918 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
70 | | nfcv 2908 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘ℂ |
71 | 31, 70 | nfel 2922 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ |
72 | 69, 71 | nfim 1900 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘((𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ) |
73 | | eleq1w 2822 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑦 → (𝑘 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
74 | 73 | 3anbi3d 1441 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑦 → ((𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) ↔ (𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
75 | 60 | eleq1d 2824 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑦 → (⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ ↔ ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ)) |
76 | 74, 75 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑦 → (((𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → ⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ) ↔ ((𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ))) |
77 | 72, 76, 58 | chvarfv 2234 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ) |
78 | 66, 67, 68, 77 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 ∈ 𝐴) → ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ) |
79 | 61, 64, 65, 78 | syl21anc 835 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) → ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶 ∈ ℂ) |
80 | 30, 31, 38, 40, 43, 59, 60, 79 | fprodsplitsn 15708 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ 𝑢 ∈ 𝐴) → ∏𝑘 ∈ (𝑧 ∪ {𝑦})⦋𝑢 / 𝑥⦌𝐶 = (∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶 · ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶)) |
81 | 80 | mpteq2dva 5175 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) → (𝑢 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})⦋𝑢 / 𝑥⦌𝐶) = (𝑢 ∈ 𝐴 ↦ (∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶 · ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶))) |
82 | 81 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ)) → (𝑢 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})⦋𝑢 / 𝑥⦌𝐶) = (𝑢 ∈ 𝐴 ↦ (∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶 · ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶))) |
83 | | nfcv 2908 |
. . . . . . . . . . 11
⊢
Ⅎ𝑢∏𝑘 ∈ 𝑧 𝐶 |
84 | | nfcv 2908 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝑧 |
85 | 84, 23 | nfcprod 15630 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶 |
86 | 25 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑢 ∧ 𝑘 ∈ 𝑧) → 𝐶 = ⦋𝑢 / 𝑥⦌𝐶) |
87 | 86 | prodeq2dv 15642 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑢 → ∏𝑘 ∈ 𝑧 𝐶 = ∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶) |
88 | 83, 85, 87 | cbvmpt 5186 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) = (𝑢 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶) |
89 | 88 | eqcomi 2748 |
. . . . . . . . 9
⊢ (𝑢 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶) = (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) |
90 | 89 | a1i 11 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ) → (𝑢 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶) = (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶)) |
91 | | id 22 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ) → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ)) |
92 | 90, 91 | eqeltrd 2840 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ) → (𝑢 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ)) |
93 | 92 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ)) → (𝑢 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ)) |
94 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝜑 ∧ 𝑦 ∈ 𝐵) |
95 | | nfcv 2908 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘𝐴 |
96 | 95, 31 | nfmpt 5182 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝑢 ∈ 𝐴 ↦ ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶) |
97 | | nfcv 2908 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝐴–cn→ℂ) |
98 | 96, 97 | nfel 2922 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝑢 ∈ 𝐴 ↦ ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ) |
99 | 94, 98 | nfim 1900 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑢 ∈ 𝐴 ↦ ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ)) |
100 | 73 | anbi2d 629 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑦 → ((𝜑 ∧ 𝑘 ∈ 𝐵) ↔ (𝜑 ∧ 𝑦 ∈ 𝐵))) |
101 | 60 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑘 = 𝑦 ∧ 𝑢 ∈ 𝐴) → ⦋𝑢 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶) |
102 | 101 | mpteq2dva 5175 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑦 → (𝑢 ∈ 𝐴 ↦ ⦋𝑢 / 𝑥⦌𝐶) = (𝑢 ∈ 𝐴 ↦ ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶)) |
103 | 102 | eleq1d 2824 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑦 → ((𝑢 ∈ 𝐴 ↦ ⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ) ↔ (𝑢 ∈ 𝐴 ↦ ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ))) |
104 | 100, 103 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑘 = 𝑦 → (((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑢 ∈ 𝐴 ↦ ⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ)) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑢 ∈ 𝐴 ↦ ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ)))) |
105 | | nfcv 2908 |
. . . . . . . . . . 11
⊢
Ⅎ𝑢𝐶 |
106 | 105, 23, 25 | cbvmpt 5186 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑢 ∈ 𝐴 ↦ ⦋𝑢 / 𝑥⦌𝐶) |
107 | | fprodcncf.cn |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ (𝐴–cn→ℂ)) |
108 | 106, 107 | eqeltrrid 2845 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑢 ∈ 𝐴 ↦ ⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ)) |
109 | 99, 104, 108 | chvarfv 2234 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑢 ∈ 𝐴 ↦ ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ)) |
110 | 63, 109 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) → (𝑢 ∈ 𝐴 ↦ ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ)) |
111 | 110 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ)) → (𝑢 ∈ 𝐴 ↦ ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ)) |
112 | 93, 111 | mulcncf 24619 |
. . . . 5
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ)) → (𝑢 ∈ 𝐴 ↦ (∏𝑘 ∈ 𝑧 ⦋𝑢 / 𝑥⦌𝐶 · ⦋𝑦 / 𝑘⦌⦋𝑢 / 𝑥⦌𝐶)) ∈ (𝐴–cn→ℂ)) |
113 | 82, 112 | eqeltrd 2840 |
. . . 4
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ)) → (𝑢 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})⦋𝑢 / 𝑥⦌𝐶) ∈ (𝐴–cn→ℂ)) |
114 | 29, 113 | eqeltrd 2840 |
. . 3
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) ∧ (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ)) → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) ∈ (𝐴–cn→ℂ)) |
115 | 114 | ex 413 |
. 2
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ (𝐵 ∖ 𝑧))) → ((𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝑧 𝐶) ∈ (𝐴–cn→ℂ) → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) ∈ (𝐴–cn→ℂ))) |
116 | 3, 6, 9, 12, 20, 115, 32 | findcard2d 8958 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ∏𝑘 ∈ 𝐵 𝐶) ∈ (𝐴–cn→ℂ)) |