Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodcncf Structured version   Visualization version   GIF version

Theorem fprodcncf 45856
Description: The finite product of continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodcncf.a (𝜑𝐴 ⊆ ℂ)
fprodcncf.b (𝜑𝐵 ∈ Fin)
fprodcncf.c ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
fprodcncf.cn ((𝜑𝑘𝐵) → (𝑥𝐴𝐶) ∈ (𝐴cn→ℂ))
Assertion
Ref Expression
fprodcncf (𝜑 → (𝑥𝐴 ↦ ∏𝑘𝐵 𝐶) ∈ (𝐴cn→ℂ))
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐶(𝑥,𝑘)

Proof of Theorem fprodcncf
Dummy variables 𝑢 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 15940 . . . 4 (𝑤 = ∅ → ∏𝑘𝑤 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
21mpteq2dv 5250 . . 3 (𝑤 = ∅ → (𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) = (𝑥𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶))
32eleq1d 2824 . 2 (𝑤 = ∅ → ((𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶) ∈ (𝐴cn→ℂ)))
4 prodeq1 15940 . . . 4 (𝑤 = 𝑧 → ∏𝑘𝑤 𝐶 = ∏𝑘𝑧 𝐶)
54mpteq2dv 5250 . . 3 (𝑤 = 𝑧 → (𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) = (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶))
65eleq1d 2824 . 2 (𝑤 = 𝑧 → ((𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)))
7 prodeq1 15940 . . . 4 (𝑤 = (𝑧 ∪ {𝑦}) → ∏𝑘𝑤 𝐶 = ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶)
87mpteq2dv 5250 . . 3 (𝑤 = (𝑧 ∪ {𝑦}) → (𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) = (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶))
98eleq1d 2824 . 2 (𝑤 = (𝑧 ∪ {𝑦}) → ((𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) ∈ (𝐴cn→ℂ)))
10 prodeq1 15940 . . . 4 (𝑤 = 𝐵 → ∏𝑘𝑤 𝐶 = ∏𝑘𝐵 𝐶)
1110mpteq2dv 5250 . . 3 (𝑤 = 𝐵 → (𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) = (𝑥𝐴 ↦ ∏𝑘𝐵 𝐶))
1211eleq1d 2824 . 2 (𝑤 = 𝐵 → ((𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴 ↦ ∏𝑘𝐵 𝐶) ∈ (𝐴cn→ℂ)))
13 prod0 15976 . . . . 5 𝑘 ∈ ∅ 𝐶 = 1
1413a1i 11 . . . 4 (𝜑 → ∏𝑘 ∈ ∅ 𝐶 = 1)
1514mpteq2dv 5250 . . 3 (𝜑 → (𝑥𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶) = (𝑥𝐴 ↦ 1))
16 fprodcncf.a . . . 4 (𝜑𝐴 ⊆ ℂ)
17 1cnd 11254 . . . 4 (𝜑 → 1 ∈ ℂ)
18 ssidd 4019 . . . 4 (𝜑 → ℂ ⊆ ℂ)
1916, 17, 18constcncfg 45828 . . 3 (𝜑 → (𝑥𝐴 ↦ 1) ∈ (𝐴cn→ℂ))
2015, 19eqeltrd 2839 . 2 (𝜑 → (𝑥𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶) ∈ (𝐴cn→ℂ))
21 nfcv 2903 . . . . . 6 𝑢𝑘 ∈ (𝑧 ∪ {𝑦})𝐶
22 nfcv 2903 . . . . . . 7 𝑥(𝑧 ∪ {𝑦})
23 nfcsb1v 3933 . . . . . . 7 𝑥𝑢 / 𝑥𝐶
2422, 23nfcprod 15942 . . . . . 6 𝑥𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶
25 csbeq1a 3922 . . . . . . . 8 (𝑥 = 𝑢𝐶 = 𝑢 / 𝑥𝐶)
2625adantr 480 . . . . . . 7 ((𝑥 = 𝑢𝑘 ∈ (𝑧 ∪ {𝑦})) → 𝐶 = 𝑢 / 𝑥𝐶)
2726prodeq2dv 15955 . . . . . 6 (𝑥 = 𝑢 → ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶 = ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶)
2821, 24, 27cbvmpt 5259 . . . . 5 (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) = (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶)
2928a1i 11 . . . 4 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) = (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶))
30 nfv 1912 . . . . . . . 8 𝑘((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴)
31 nfcsb1v 3933 . . . . . . . 8 𝑘𝑦 / 𝑘𝑢 / 𝑥𝐶
32 fprodcncf.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ Fin)
3332adantr 480 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → 𝐵 ∈ Fin)
34 simpr 484 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → 𝑧𝐵)
35 ssfi 9212 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝑧𝐵) → 𝑧 ∈ Fin)
3633, 34, 35syl2anc 584 . . . . . . . . . 10 ((𝜑𝑧𝐵) → 𝑧 ∈ Fin)
3736adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → 𝑧 ∈ Fin)
3837adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑧 ∈ Fin)
39 vex 3482 . . . . . . . . 9 𝑦 ∈ V
4039a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑦 ∈ V)
41 eldifn 4142 . . . . . . . . . 10 (𝑦 ∈ (𝐵𝑧) → ¬ 𝑦𝑧)
4241ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → ¬ 𝑦𝑧)
4342adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → ¬ 𝑦𝑧)
44 simplll 775 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝜑)
45 simplr 769 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑢𝐴)
4634adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → 𝑧𝐵)
4746ad2antrr 726 . . . . . . . . . 10 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑧𝐵)
48 simpr 484 . . . . . . . . . 10 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑘𝑧)
4947, 48sseldd 3996 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑘𝐵)
50 nfv 1912 . . . . . . . . . . 11 𝑥(𝜑𝑢𝐴𝑘𝐵)
5123nfel1 2920 . . . . . . . . . . 11 𝑥𝑢 / 𝑥𝐶 ∈ ℂ
5250, 51nfim 1894 . . . . . . . . . 10 𝑥((𝜑𝑢𝐴𝑘𝐵) → 𝑢 / 𝑥𝐶 ∈ ℂ)
53 eleq1w 2822 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (𝑥𝐴𝑢𝐴))
54533anbi2d 1440 . . . . . . . . . . 11 (𝑥 = 𝑢 → ((𝜑𝑥𝐴𝑘𝐵) ↔ (𝜑𝑢𝐴𝑘𝐵)))
5525eleq1d 2824 . . . . . . . . . . 11 (𝑥 = 𝑢 → (𝐶 ∈ ℂ ↔ 𝑢 / 𝑥𝐶 ∈ ℂ))
5654, 55imbi12d 344 . . . . . . . . . 10 (𝑥 = 𝑢 → (((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑢𝐴𝑘𝐵) → 𝑢 / 𝑥𝐶 ∈ ℂ)))
57 fprodcncf.c . . . . . . . . . 10 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
5852, 56, 57chvarfv 2238 . . . . . . . . 9 ((𝜑𝑢𝐴𝑘𝐵) → 𝑢 / 𝑥𝐶 ∈ ℂ)
5944, 45, 49, 58syl3anc 1370 . . . . . . . 8 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑢 / 𝑥𝐶 ∈ ℂ)
60 csbeq1a 3922 . . . . . . . 8 (𝑘 = 𝑦𝑢 / 𝑥𝐶 = 𝑦 / 𝑘𝑢 / 𝑥𝐶)
61 simpll 767 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝜑)
62 eldifi 4141 . . . . . . . . . . 11 (𝑦 ∈ (𝐵𝑧) → 𝑦𝐵)
6362ad2antll 729 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → 𝑦𝐵)
6463adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑦𝐵)
65 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑢𝐴)
66 simpll 767 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ 𝑢𝐴) → 𝜑)
67 simpr 484 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ 𝑢𝐴) → 𝑢𝐴)
68 simplr 769 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ 𝑢𝐴) → 𝑦𝐵)
69 nfv 1912 . . . . . . . . . . . 12 𝑘(𝜑𝑢𝐴𝑦𝐵)
70 nfcv 2903 . . . . . . . . . . . . 13 𝑘
7131, 70nfel 2918 . . . . . . . . . . . 12 𝑘𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ
7269, 71nfim 1894 . . . . . . . . . . 11 𝑘((𝜑𝑢𝐴𝑦𝐵) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)
73 eleq1w 2822 . . . . . . . . . . . . 13 (𝑘 = 𝑦 → (𝑘𝐵𝑦𝐵))
74733anbi3d 1441 . . . . . . . . . . . 12 (𝑘 = 𝑦 → ((𝜑𝑢𝐴𝑘𝐵) ↔ (𝜑𝑢𝐴𝑦𝐵)))
7560eleq1d 2824 . . . . . . . . . . . 12 (𝑘 = 𝑦 → (𝑢 / 𝑥𝐶 ∈ ℂ ↔ 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ))
7674, 75imbi12d 344 . . . . . . . . . . 11 (𝑘 = 𝑦 → (((𝜑𝑢𝐴𝑘𝐵) → 𝑢 / 𝑥𝐶 ∈ ℂ) ↔ ((𝜑𝑢𝐴𝑦𝐵) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)))
7772, 76, 58chvarfv 2238 . . . . . . . . . 10 ((𝜑𝑢𝐴𝑦𝐵) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)
7866, 67, 68, 77syl3anc 1370 . . . . . . . . 9 (((𝜑𝑦𝐵) ∧ 𝑢𝐴) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)
7961, 64, 65, 78syl21anc 838 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)
8030, 31, 38, 40, 43, 59, 60, 79fprodsplitsn 16022 . . . . . . 7 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶 = (∏𝑘𝑧 𝑢 / 𝑥𝐶 · 𝑦 / 𝑘𝑢 / 𝑥𝐶))
8180mpteq2dva 5248 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶) = (𝑢𝐴 ↦ (∏𝑘𝑧 𝑢 / 𝑥𝐶 · 𝑦 / 𝑘𝑢 / 𝑥𝐶)))
8281adantr 480 . . . . 5 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶) = (𝑢𝐴 ↦ (∏𝑘𝑧 𝑢 / 𝑥𝐶 · 𝑦 / 𝑘𝑢 / 𝑥𝐶)))
83 nfcv 2903 . . . . . . . . . . 11 𝑢𝑘𝑧 𝐶
84 nfcv 2903 . . . . . . . . . . . 12 𝑥𝑧
8584, 23nfcprod 15942 . . . . . . . . . . 11 𝑥𝑘𝑧 𝑢 / 𝑥𝐶
8625adantr 480 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑘𝑧) → 𝐶 = 𝑢 / 𝑥𝐶)
8786prodeq2dv 15955 . . . . . . . . . . 11 (𝑥 = 𝑢 → ∏𝑘𝑧 𝐶 = ∏𝑘𝑧 𝑢 / 𝑥𝐶)
8883, 85, 87cbvmpt 5259 . . . . . . . . . 10 (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) = (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶)
8988eqcomi 2744 . . . . . . . . 9 (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶) = (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶)
9089a1i 11 . . . . . . . 8 ((𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ) → (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶) = (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶))
91 id 22 . . . . . . . 8 ((𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ) → (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ))
9290, 91eqeltrd 2839 . . . . . . 7 ((𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ) → (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
9392adantl 481 . . . . . 6 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
94 nfv 1912 . . . . . . . . . 10 𝑘(𝜑𝑦𝐵)
95 nfcv 2903 . . . . . . . . . . . 12 𝑘𝐴
9695, 31nfmpt 5255 . . . . . . . . . . 11 𝑘(𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶)
97 nfcv 2903 . . . . . . . . . . 11 𝑘(𝐴cn→ℂ)
9896, 97nfel 2918 . . . . . . . . . 10 𝑘(𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ)
9994, 98nfim 1894 . . . . . . . . 9 𝑘((𝜑𝑦𝐵) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
10073anbi2d 630 . . . . . . . . . 10 (𝑘 = 𝑦 → ((𝜑𝑘𝐵) ↔ (𝜑𝑦𝐵)))
10160adantr 480 . . . . . . . . . . . 12 ((𝑘 = 𝑦𝑢𝐴) → 𝑢 / 𝑥𝐶 = 𝑦 / 𝑘𝑢 / 𝑥𝐶)
102101mpteq2dva 5248 . . . . . . . . . . 11 (𝑘 = 𝑦 → (𝑢𝐴𝑢 / 𝑥𝐶) = (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶))
103102eleq1d 2824 . . . . . . . . . 10 (𝑘 = 𝑦 → ((𝑢𝐴𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ)))
104100, 103imbi12d 344 . . . . . . . . 9 (𝑘 = 𝑦 → (((𝜑𝑘𝐵) → (𝑢𝐴𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ)) ↔ ((𝜑𝑦𝐵) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))))
105 nfcv 2903 . . . . . . . . . . 11 𝑢𝐶
106105, 23, 25cbvmpt 5259 . . . . . . . . . 10 (𝑥𝐴𝐶) = (𝑢𝐴𝑢 / 𝑥𝐶)
107 fprodcncf.cn . . . . . . . . . 10 ((𝜑𝑘𝐵) → (𝑥𝐴𝐶) ∈ (𝐴cn→ℂ))
108106, 107eqeltrrid 2844 . . . . . . . . 9 ((𝜑𝑘𝐵) → (𝑢𝐴𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
10999, 104, 108chvarfv 2238 . . . . . . . 8 ((𝜑𝑦𝐵) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
11063, 109syldan 591 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
111110adantr 480 . . . . . 6 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
11293, 111mulcncf 25494 . . . . 5 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴 ↦ (∏𝑘𝑧 𝑢 / 𝑥𝐶 · 𝑦 / 𝑘𝑢 / 𝑥𝐶)) ∈ (𝐴cn→ℂ))
11382, 112eqeltrd 2839 . . . 4 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
11429, 113eqeltrd 2839 . . 3 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) ∈ (𝐴cn→ℂ))
115114ex 412 . 2 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → ((𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ) → (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) ∈ (𝐴cn→ℂ)))
1163, 6, 9, 12, 20, 115, 32findcard2d 9205 1 (𝜑 → (𝑥𝐴 ↦ ∏𝑘𝐵 𝐶) ∈ (𝐴cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  csb 3908  cdif 3960  cun 3961  wss 3963  c0 4339  {csn 4631  cmpt 5231  (class class class)co 7431  Fincfn 8984  cc 11151  1c1 11154   · cmul 11158  cprod 15936  cnccncf 24916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-prod 15937  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cn 23251  df-cnp 23252  df-tx 23586  df-hmeo 23779  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918
This theorem is referenced by:  etransclem18  46208  etransclem34  46224  etransclem46  46236
  Copyright terms: Public domain W3C validator