Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodcncf Structured version   Visualization version   GIF version

Theorem fprodcncf 42468
 Description: The finite product of continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodcncf.a (𝜑𝐴 ⊆ ℂ)
fprodcncf.b (𝜑𝐵 ∈ Fin)
fprodcncf.c ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
fprodcncf.cn ((𝜑𝑘𝐵) → (𝑥𝐴𝐶) ∈ (𝐴cn→ℂ))
Assertion
Ref Expression
fprodcncf (𝜑 → (𝑥𝐴 ↦ ∏𝑘𝐵 𝐶) ∈ (𝐴cn→ℂ))
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐶(𝑥,𝑘)

Proof of Theorem fprodcncf
Dummy variables 𝑢 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 15263 . . . 4 (𝑤 = ∅ → ∏𝑘𝑤 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
21mpteq2dv 5148 . . 3 (𝑤 = ∅ → (𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) = (𝑥𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶))
32eleq1d 2900 . 2 (𝑤 = ∅ → ((𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶) ∈ (𝐴cn→ℂ)))
4 prodeq1 15263 . . . 4 (𝑤 = 𝑧 → ∏𝑘𝑤 𝐶 = ∏𝑘𝑧 𝐶)
54mpteq2dv 5148 . . 3 (𝑤 = 𝑧 → (𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) = (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶))
65eleq1d 2900 . 2 (𝑤 = 𝑧 → ((𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)))
7 prodeq1 15263 . . . 4 (𝑤 = (𝑧 ∪ {𝑦}) → ∏𝑘𝑤 𝐶 = ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶)
87mpteq2dv 5148 . . 3 (𝑤 = (𝑧 ∪ {𝑦}) → (𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) = (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶))
98eleq1d 2900 . 2 (𝑤 = (𝑧 ∪ {𝑦}) → ((𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) ∈ (𝐴cn→ℂ)))
10 prodeq1 15263 . . . 4 (𝑤 = 𝐵 → ∏𝑘𝑤 𝐶 = ∏𝑘𝐵 𝐶)
1110mpteq2dv 5148 . . 3 (𝑤 = 𝐵 → (𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) = (𝑥𝐴 ↦ ∏𝑘𝐵 𝐶))
1211eleq1d 2900 . 2 (𝑤 = 𝐵 → ((𝑥𝐴 ↦ ∏𝑘𝑤 𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴 ↦ ∏𝑘𝐵 𝐶) ∈ (𝐴cn→ℂ)))
13 prod0 15297 . . . . 5 𝑘 ∈ ∅ 𝐶 = 1
1413a1i 11 . . . 4 (𝜑 → ∏𝑘 ∈ ∅ 𝐶 = 1)
1514mpteq2dv 5148 . . 3 (𝜑 → (𝑥𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶) = (𝑥𝐴 ↦ 1))
16 fprodcncf.a . . . 4 (𝜑𝐴 ⊆ ℂ)
17 1cnd 10634 . . . 4 (𝜑 → 1 ∈ ℂ)
18 ssidd 3976 . . . 4 (𝜑 → ℂ ⊆ ℂ)
1916, 17, 18constcncfg 42440 . . 3 (𝜑 → (𝑥𝐴 ↦ 1) ∈ (𝐴cn→ℂ))
2015, 19eqeltrd 2916 . 2 (𝜑 → (𝑥𝐴 ↦ ∏𝑘 ∈ ∅ 𝐶) ∈ (𝐴cn→ℂ))
21 nfcv 2982 . . . . . 6 𝑢𝑘 ∈ (𝑧 ∪ {𝑦})𝐶
22 nfcv 2982 . . . . . . 7 𝑥(𝑧 ∪ {𝑦})
23 nfcsb1v 3890 . . . . . . 7 𝑥𝑢 / 𝑥𝐶
2422, 23nfcprod 15265 . . . . . 6 𝑥𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶
25 csbeq1a 3880 . . . . . . . 8 (𝑥 = 𝑢𝐶 = 𝑢 / 𝑥𝐶)
2625adantr 484 . . . . . . 7 ((𝑥 = 𝑢𝑘 ∈ (𝑧 ∪ {𝑦})) → 𝐶 = 𝑢 / 𝑥𝐶)
2726prodeq2dv 15277 . . . . . 6 (𝑥 = 𝑢 → ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶 = ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶)
2821, 24, 27cbvmpt 5153 . . . . 5 (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) = (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶)
2928a1i 11 . . . 4 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) = (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶))
30 nfv 1916 . . . . . . . 8 𝑘((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴)
31 nfcsb1v 3890 . . . . . . . 8 𝑘𝑦 / 𝑘𝑢 / 𝑥𝐶
32 fprodcncf.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ Fin)
3332adantr 484 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → 𝐵 ∈ Fin)
34 simpr 488 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → 𝑧𝐵)
35 ssfi 8735 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝑧𝐵) → 𝑧 ∈ Fin)
3633, 34, 35syl2anc 587 . . . . . . . . . 10 ((𝜑𝑧𝐵) → 𝑧 ∈ Fin)
3736adantrr 716 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → 𝑧 ∈ Fin)
3837adantr 484 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑧 ∈ Fin)
39 vex 3483 . . . . . . . . 9 𝑦 ∈ V
4039a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑦 ∈ V)
41 eldifn 4090 . . . . . . . . . 10 (𝑦 ∈ (𝐵𝑧) → ¬ 𝑦𝑧)
4241ad2antll 728 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → ¬ 𝑦𝑧)
4342adantr 484 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → ¬ 𝑦𝑧)
44 simplll 774 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝜑)
45 simplr 768 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑢𝐴)
4634adantrr 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → 𝑧𝐵)
4746ad2antrr 725 . . . . . . . . . 10 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑧𝐵)
48 simpr 488 . . . . . . . . . 10 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑘𝑧)
4947, 48sseldd 3954 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑘𝐵)
50 nfv 1916 . . . . . . . . . . 11 𝑥(𝜑𝑢𝐴𝑘𝐵)
5123nfel1 2998 . . . . . . . . . . 11 𝑥𝑢 / 𝑥𝐶 ∈ ℂ
5250, 51nfim 1898 . . . . . . . . . 10 𝑥((𝜑𝑢𝐴𝑘𝐵) → 𝑢 / 𝑥𝐶 ∈ ℂ)
53 eleq1w 2898 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (𝑥𝐴𝑢𝐴))
54533anbi2d 1438 . . . . . . . . . . 11 (𝑥 = 𝑢 → ((𝜑𝑥𝐴𝑘𝐵) ↔ (𝜑𝑢𝐴𝑘𝐵)))
5525eleq1d 2900 . . . . . . . . . . 11 (𝑥 = 𝑢 → (𝐶 ∈ ℂ ↔ 𝑢 / 𝑥𝐶 ∈ ℂ))
5654, 55imbi12d 348 . . . . . . . . . 10 (𝑥 = 𝑢 → (((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑢𝐴𝑘𝐵) → 𝑢 / 𝑥𝐶 ∈ ℂ)))
57 fprodcncf.c . . . . . . . . . 10 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
5852, 56, 57chvarfv 2244 . . . . . . . . 9 ((𝜑𝑢𝐴𝑘𝐵) → 𝑢 / 𝑥𝐶 ∈ ℂ)
5944, 45, 49, 58syl3anc 1368 . . . . . . . 8 ((((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) ∧ 𝑘𝑧) → 𝑢 / 𝑥𝐶 ∈ ℂ)
60 csbeq1a 3880 . . . . . . . 8 (𝑘 = 𝑦𝑢 / 𝑥𝐶 = 𝑦 / 𝑘𝑢 / 𝑥𝐶)
61 simpll 766 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝜑)
62 eldifi 4089 . . . . . . . . . . 11 (𝑦 ∈ (𝐵𝑧) → 𝑦𝐵)
6362ad2antll 728 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → 𝑦𝐵)
6463adantr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑦𝐵)
65 simpr 488 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑢𝐴)
66 simpll 766 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ 𝑢𝐴) → 𝜑)
67 simpr 488 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ 𝑢𝐴) → 𝑢𝐴)
68 simplr 768 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ 𝑢𝐴) → 𝑦𝐵)
69 nfv 1916 . . . . . . . . . . . 12 𝑘(𝜑𝑢𝐴𝑦𝐵)
70 nfcv 2982 . . . . . . . . . . . . 13 𝑘
7131, 70nfel 2996 . . . . . . . . . . . 12 𝑘𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ
7269, 71nfim 1898 . . . . . . . . . . 11 𝑘((𝜑𝑢𝐴𝑦𝐵) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)
73 eleq1w 2898 . . . . . . . . . . . . 13 (𝑘 = 𝑦 → (𝑘𝐵𝑦𝐵))
74733anbi3d 1439 . . . . . . . . . . . 12 (𝑘 = 𝑦 → ((𝜑𝑢𝐴𝑘𝐵) ↔ (𝜑𝑢𝐴𝑦𝐵)))
7560eleq1d 2900 . . . . . . . . . . . 12 (𝑘 = 𝑦 → (𝑢 / 𝑥𝐶 ∈ ℂ ↔ 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ))
7674, 75imbi12d 348 . . . . . . . . . . 11 (𝑘 = 𝑦 → (((𝜑𝑢𝐴𝑘𝐵) → 𝑢 / 𝑥𝐶 ∈ ℂ) ↔ ((𝜑𝑢𝐴𝑦𝐵) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)))
7772, 76, 58chvarfv 2244 . . . . . . . . . 10 ((𝜑𝑢𝐴𝑦𝐵) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)
7866, 67, 68, 77syl3anc 1368 . . . . . . . . 9 (((𝜑𝑦𝐵) ∧ 𝑢𝐴) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)
7961, 64, 65, 78syl21anc 836 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → 𝑦 / 𝑘𝑢 / 𝑥𝐶 ∈ ℂ)
8030, 31, 38, 40, 43, 59, 60, 79fprodsplitsn 15343 . . . . . . 7 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ 𝑢𝐴) → ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶 = (∏𝑘𝑧 𝑢 / 𝑥𝐶 · 𝑦 / 𝑘𝑢 / 𝑥𝐶))
8180mpteq2dva 5147 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶) = (𝑢𝐴 ↦ (∏𝑘𝑧 𝑢 / 𝑥𝐶 · 𝑦 / 𝑘𝑢 / 𝑥𝐶)))
8281adantr 484 . . . . 5 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶) = (𝑢𝐴 ↦ (∏𝑘𝑧 𝑢 / 𝑥𝐶 · 𝑦 / 𝑘𝑢 / 𝑥𝐶)))
83 nfcv 2982 . . . . . . . . . . 11 𝑢𝑘𝑧 𝐶
84 nfcv 2982 . . . . . . . . . . . 12 𝑥𝑧
8584, 23nfcprod 15265 . . . . . . . . . . 11 𝑥𝑘𝑧 𝑢 / 𝑥𝐶
8625adantr 484 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑘𝑧) → 𝐶 = 𝑢 / 𝑥𝐶)
8786prodeq2dv 15277 . . . . . . . . . . 11 (𝑥 = 𝑢 → ∏𝑘𝑧 𝐶 = ∏𝑘𝑧 𝑢 / 𝑥𝐶)
8883, 85, 87cbvmpt 5153 . . . . . . . . . 10 (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) = (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶)
8988eqcomi 2833 . . . . . . . . 9 (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶) = (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶)
9089a1i 11 . . . . . . . 8 ((𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ) → (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶) = (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶))
91 id 22 . . . . . . . 8 ((𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ) → (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ))
9290, 91eqeltrd 2916 . . . . . . 7 ((𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ) → (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
9392adantl 485 . . . . . 6 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴 ↦ ∏𝑘𝑧 𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
94 nfv 1916 . . . . . . . . . 10 𝑘(𝜑𝑦𝐵)
95 nfcv 2982 . . . . . . . . . . . 12 𝑘𝐴
9695, 31nfmpt 5149 . . . . . . . . . . 11 𝑘(𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶)
97 nfcv 2982 . . . . . . . . . . 11 𝑘(𝐴cn→ℂ)
9896, 97nfel 2996 . . . . . . . . . 10 𝑘(𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ)
9994, 98nfim 1898 . . . . . . . . 9 𝑘((𝜑𝑦𝐵) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
10073anbi2d 631 . . . . . . . . . 10 (𝑘 = 𝑦 → ((𝜑𝑘𝐵) ↔ (𝜑𝑦𝐵)))
10160adantr 484 . . . . . . . . . . . 12 ((𝑘 = 𝑦𝑢𝐴) → 𝑢 / 𝑥𝐶 = 𝑦 / 𝑘𝑢 / 𝑥𝐶)
102101mpteq2dva 5147 . . . . . . . . . . 11 (𝑘 = 𝑦 → (𝑢𝐴𝑢 / 𝑥𝐶) = (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶))
103102eleq1d 2900 . . . . . . . . . 10 (𝑘 = 𝑦 → ((𝑢𝐴𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ) ↔ (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ)))
104100, 103imbi12d 348 . . . . . . . . 9 (𝑘 = 𝑦 → (((𝜑𝑘𝐵) → (𝑢𝐴𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ)) ↔ ((𝜑𝑦𝐵) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))))
105 nfcv 2982 . . . . . . . . . . 11 𝑢𝐶
106105, 23, 25cbvmpt 5153 . . . . . . . . . 10 (𝑥𝐴𝐶) = (𝑢𝐴𝑢 / 𝑥𝐶)
107 fprodcncf.cn . . . . . . . . . 10 ((𝜑𝑘𝐵) → (𝑥𝐴𝐶) ∈ (𝐴cn→ℂ))
108106, 107eqeltrrid 2921 . . . . . . . . 9 ((𝜑𝑘𝐵) → (𝑢𝐴𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
10999, 104, 108chvarfv 2244 . . . . . . . 8 ((𝜑𝑦𝐵) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
11063, 109syldan 594 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
111110adantr 484 . . . . . 6 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴𝑦 / 𝑘𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
11293, 111mulcncf 24053 . . . . 5 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴 ↦ (∏𝑘𝑧 𝑢 / 𝑥𝐶 · 𝑦 / 𝑘𝑢 / 𝑥𝐶)) ∈ (𝐴cn→ℂ))
11382, 112eqeltrd 2916 . . . 4 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑢𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝑢 / 𝑥𝐶) ∈ (𝐴cn→ℂ))
11429, 113eqeltrd 2916 . . 3 (((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) ∧ (𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ)) → (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) ∈ (𝐴cn→ℂ))
115114ex 416 . 2 ((𝜑 ∧ (𝑧𝐵𝑦 ∈ (𝐵𝑧))) → ((𝑥𝐴 ↦ ∏𝑘𝑧 𝐶) ∈ (𝐴cn→ℂ) → (𝑥𝐴 ↦ ∏𝑘 ∈ (𝑧 ∪ {𝑦})𝐶) ∈ (𝐴cn→ℂ)))
1163, 6, 9, 12, 20, 115, 32findcard2d 8757 1 (𝜑 → (𝑥𝐴 ↦ ∏𝑘𝐵 𝐶) ∈ (𝐴cn→ℂ))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  Vcvv 3480  ⦋csb 3866   ∖ cdif 3916   ∪ cun 3917   ⊆ wss 3919  ∅c0 4276  {csn 4550   ↦ cmpt 5132  (class class class)co 7149  Fincfn 8505  ℂcc 10533  1c1 10536   · cmul 10540  ∏cprod 15259  –cn→ccncf 23484 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-mulf 10615 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8285  df-map 8404  df-ixp 8458  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fsupp 8831  df-fi 8872  df-sup 8903  df-inf 8904  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-q 12346  df-rp 12387  df-xneg 12504  df-xadd 12505  df-xmul 12506  df-icc 12742  df-fz 12895  df-fzo 13038  df-seq 13374  df-exp 13435  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-prod 15260  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cn 21835  df-cnp 21836  df-tx 22170  df-hmeo 22363  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486 This theorem is referenced by:  etransclem18  42820  etransclem34  42836  etransclem46  42848
 Copyright terms: Public domain W3C validator