MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodcllem Structured version   Visualization version   GIF version

Theorem fprodcllem 15893
Description: Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.)
Hypotheses
Ref Expression
fprodcllem.1 (𝜑𝑆 ⊆ ℂ)
fprodcllem.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
fprodcllem.3 (𝜑𝐴 ∈ Fin)
fprodcllem.4 ((𝜑𝑘𝐴) → 𝐵𝑆)
fprodcllem.5 (𝜑 → 1 ∈ 𝑆)
Assertion
Ref Expression
fprodcllem (𝜑 → ∏𝑘𝐴 𝐵𝑆)
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝑥,𝐵,𝑦   𝜑,𝑘,𝑥,𝑦   𝑆,𝑘,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fprodcllem
StepHypRef Expression
1 prodeq1 15851 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
2 prod0 15885 . . . . 5 𝑘 ∈ ∅ 𝐵 = 1
31, 2eqtrdi 2780 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = 1)
43adantl 481 . . 3 ((𝜑𝐴 = ∅) → ∏𝑘𝐴 𝐵 = 1)
5 fprodcllem.5 . . . 4 (𝜑 → 1 ∈ 𝑆)
65adantr 480 . . 3 ((𝜑𝐴 = ∅) → 1 ∈ 𝑆)
74, 6eqeltrd 2825 . 2 ((𝜑𝐴 = ∅) → ∏𝑘𝐴 𝐵𝑆)
8 fprodcllem.1 . . . 4 (𝜑𝑆 ⊆ ℂ)
98adantr 480 . . 3 ((𝜑𝐴 ≠ ∅) → 𝑆 ⊆ ℂ)
10 fprodcllem.2 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
1110adantlr 712 . . 3 (((𝜑𝐴 ≠ ∅) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
12 fprodcllem.3 . . . 4 (𝜑𝐴 ∈ Fin)
1312adantr 480 . . 3 ((𝜑𝐴 ≠ ∅) → 𝐴 ∈ Fin)
14 fprodcllem.4 . . . 4 ((𝜑𝑘𝐴) → 𝐵𝑆)
1514adantlr 712 . . 3 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → 𝐵𝑆)
16 simpr 484 . . 3 ((𝜑𝐴 ≠ ∅) → 𝐴 ≠ ∅)
179, 11, 13, 15, 16fprodcl2lem 15892 . 2 ((𝜑𝐴 ≠ ∅) → ∏𝑘𝐴 𝐵𝑆)
187, 17pm2.61dane 3021 1 (𝜑 → ∏𝑘𝐴 𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wne 2932  wss 3941  c0 4315  (class class class)co 7402  Fincfn 8936  cc 11105  1c1 11108   · cmul 11112  cprod 15847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-oi 9502  df-card 9931  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-n0 12471  df-z 12557  df-uz 12821  df-rp 12973  df-fz 13483  df-fzo 13626  df-seq 13965  df-exp 14026  df-hash 14289  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-clim 15430  df-prod 15848
This theorem is referenced by:  fprodcl  15894  fprodrecl  15895  fprodzcl  15896  fprodnncl  15897  fprodrpcl  15898  fprodnn0cl  15899  fprodcllemf  15900  risefaccllem  15955  fallfaccllem  15956
  Copyright terms: Public domain W3C validator