Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodexp Structured version   Visualization version   GIF version

Theorem fprodexp 41867
Description: Positive integer exponentiation of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodexp.kph 𝑘𝜑
fprodexp.n (𝜑𝑁 ∈ ℕ0)
fprodexp.a (𝜑𝐴 ∈ Fin)
fprodexp.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fprodexp (𝜑 → ∏𝑘𝐴 (𝐵𝑁) = (∏𝑘𝐴 𝐵𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fprodexp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 15257 . . 3 (𝑥 = ∅ → ∏𝑘𝑥 (𝐵𝑁) = ∏𝑘 ∈ ∅ (𝐵𝑁))
2 prodeq1 15257 . . . 4 (𝑥 = ∅ → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
32oveq1d 7165 . . 3 (𝑥 = ∅ → (∏𝑘𝑥 𝐵𝑁) = (∏𝑘 ∈ ∅ 𝐵𝑁))
41, 3eqeq12d 2837 . 2 (𝑥 = ∅ → (∏𝑘𝑥 (𝐵𝑁) = (∏𝑘𝑥 𝐵𝑁) ↔ ∏𝑘 ∈ ∅ (𝐵𝑁) = (∏𝑘 ∈ ∅ 𝐵𝑁)))
5 prodeq1 15257 . . 3 (𝑥 = 𝑦 → ∏𝑘𝑥 (𝐵𝑁) = ∏𝑘𝑦 (𝐵𝑁))
6 prodeq1 15257 . . . 4 (𝑥 = 𝑦 → ∏𝑘𝑥 𝐵 = ∏𝑘𝑦 𝐵)
76oveq1d 7165 . . 3 (𝑥 = 𝑦 → (∏𝑘𝑥 𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁))
85, 7eqeq12d 2837 . 2 (𝑥 = 𝑦 → (∏𝑘𝑥 (𝐵𝑁) = (∏𝑘𝑥 𝐵𝑁) ↔ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)))
9 prodeq1 15257 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑥 (𝐵𝑁) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁))
10 prodeq1 15257 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1110oveq1d 7165 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑥 𝐵𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁))
129, 11eqeq12d 2837 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑥 (𝐵𝑁) = (∏𝑘𝑥 𝐵𝑁) ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁)))
13 prodeq1 15257 . . 3 (𝑥 = 𝐴 → ∏𝑘𝑥 (𝐵𝑁) = ∏𝑘𝐴 (𝐵𝑁))
14 prodeq1 15257 . . . 4 (𝑥 = 𝐴 → ∏𝑘𝑥 𝐵 = ∏𝑘𝐴 𝐵)
1514oveq1d 7165 . . 3 (𝑥 = 𝐴 → (∏𝑘𝑥 𝐵𝑁) = (∏𝑘𝐴 𝐵𝑁))
1613, 15eqeq12d 2837 . 2 (𝑥 = 𝐴 → (∏𝑘𝑥 (𝐵𝑁) = (∏𝑘𝑥 𝐵𝑁) ↔ ∏𝑘𝐴 (𝐵𝑁) = (∏𝑘𝐴 𝐵𝑁)))
17 fprodexp.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
1817nn0zd 12079 . . . . 5 (𝜑𝑁 ∈ ℤ)
19 1exp 13452 . . . . 5 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
2018, 19syl 17 . . . 4 (𝜑 → (1↑𝑁) = 1)
2120eqcomd 2827 . . 3 (𝜑 → 1 = (1↑𝑁))
22 prod0 15291 . . . 4 𝑘 ∈ ∅ (𝐵𝑁) = 1
2322a1i 11 . . 3 (𝜑 → ∏𝑘 ∈ ∅ (𝐵𝑁) = 1)
24 prod0 15291 . . . . 5 𝑘 ∈ ∅ 𝐵 = 1
2524oveq1i 7160 . . . 4 (∏𝑘 ∈ ∅ 𝐵𝑁) = (1↑𝑁)
2625a1i 11 . . 3 (𝜑 → (∏𝑘 ∈ ∅ 𝐵𝑁) = (1↑𝑁))
2721, 23, 263eqtr4d 2866 . 2 (𝜑 → ∏𝑘 ∈ ∅ (𝐵𝑁) = (∏𝑘 ∈ ∅ 𝐵𝑁))
28 fprodexp.kph . . . . . . . . 9 𝑘𝜑
29 nfv 1911 . . . . . . . . 9 𝑘(𝑦𝐴𝑧 ∈ (𝐴𝑦))
3028, 29nfan 1896 . . . . . . . 8 𝑘(𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦)))
31 fprodexp.a . . . . . . . . . . 11 (𝜑𝐴 ∈ Fin)
3231adantr 483 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝐴 ∈ Fin)
33 simpr 487 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝑦𝐴)
34 ssfi 8732 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
3532, 33, 34syl2anc 586 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝑦 ∈ Fin)
3635adantrr 715 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
37 simpll 765 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝜑)
3833sselda 3967 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝑘𝐴)
39 fprodexp.b . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4037, 38, 39syl2anc 586 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
4140adantlrr 719 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
4230, 36, 41fprodclf 15340 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℂ)
43 simpl 485 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝜑)
44 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
4544eldifad 3948 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
46 nfv 1911 . . . . . . . . . . 11 𝑘 𝑧𝐴
4728, 46nfan 1896 . . . . . . . . . 10 𝑘(𝜑𝑧𝐴)
48 nfcsb1v 3907 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐵
4948nfel1 2994 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵 ∈ ℂ
5047, 49nfim 1893 . . . . . . . . 9 𝑘((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵 ∈ ℂ)
51 eleq1w 2895 . . . . . . . . . . 11 (𝑘 = 𝑧 → (𝑘𝐴𝑧𝐴))
5251anbi2d 630 . . . . . . . . . 10 (𝑘 = 𝑧 → ((𝜑𝑘𝐴) ↔ (𝜑𝑧𝐴)))
53 csbeq1a 3897 . . . . . . . . . . 11 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
5453eleq1d 2897 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ 𝑧 / 𝑘𝐵 ∈ ℂ))
5552, 54imbi12d 347 . . . . . . . . 9 (𝑘 = 𝑧 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵 ∈ ℂ)))
5650, 55, 39chvarfv 2237 . . . . . . . 8 ((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵 ∈ ℂ)
5743, 45, 56syl2anc 586 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
5817adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑁 ∈ ℕ0)
59 mulexp 13462 . . . . . . 7 ((∏𝑘𝑦 𝐵 ∈ ℂ ∧ 𝑧 / 𝑘𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
6042, 57, 58, 59syl3anc 1367 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
6160eqcomd 2827 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)) = ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁))
6261adantr 483 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)) = ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁))
63 nfcv 2977 . . . . . . . 8 𝑘
64 nfcv 2977 . . . . . . . 8 𝑘𝑁
6548, 63, 64nfov 7180 . . . . . . 7 𝑘(𝑧 / 𝑘𝐵𝑁)
6644eldifbd 3949 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
6717ad2antrr 724 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝑁 ∈ ℕ0)
6840, 67expcld 13504 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → (𝐵𝑁) ∈ ℂ)
6968adantlrr 719 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → (𝐵𝑁) ∈ ℂ)
7053oveq1d 7165 . . . . . . 7 (𝑘 = 𝑧 → (𝐵𝑁) = (𝑧 / 𝑘𝐵𝑁))
7157, 58expcld 13504 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑧 / 𝑘𝐵𝑁) ∈ ℂ)
7230, 65, 36, 44, 66, 69, 70, 71fprodsplitsn 15337 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘𝑦 (𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
7372adantr 483 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘𝑦 (𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
74 oveq1 7157 . . . . . 6 (∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁) → (∏𝑘𝑦 (𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
7574adantl 484 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → (∏𝑘𝑦 (𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
7673, 75eqtrd 2856 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
7730, 48, 36, 44, 66, 41, 53, 57fprodsplitsn 15337 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
7877adantr 483 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
7978oveq1d 7165 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁) = ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁))
8062, 76, 793eqtr4d 2866 . . 3 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁))
8180ex 415 . 2 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁)))
824, 8, 12, 16, 27, 81, 31findcard2d 8754 1 (𝜑 → ∏𝑘𝐴 (𝐵𝑁) = (∏𝑘𝐴 𝐵𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wnf 1780  wcel 2110  csb 3883  cdif 3933  cun 3934  wss 3936  c0 4291  {csn 4561  (class class class)co 7150  Fincfn 8503  cc 10529  1c1 10532   · cmul 10536  0cn0 11891  cz 11975  cexp 13423  cprod 15253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-prod 15254
This theorem is referenced by:  etransclem35  42547
  Copyright terms: Public domain W3C validator