Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodexp Structured version   Visualization version   GIF version

Theorem fprodexp 43025
Description: Positive integer exponentiation of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodexp.kph 𝑘𝜑
fprodexp.n (𝜑𝑁 ∈ ℕ0)
fprodexp.a (𝜑𝐴 ∈ Fin)
fprodexp.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fprodexp (𝜑 → ∏𝑘𝐴 (𝐵𝑁) = (∏𝑘𝐴 𝐵𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fprodexp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 15547 . . 3 (𝑥 = ∅ → ∏𝑘𝑥 (𝐵𝑁) = ∏𝑘 ∈ ∅ (𝐵𝑁))
2 prodeq1 15547 . . . 4 (𝑥 = ∅ → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
32oveq1d 7270 . . 3 (𝑥 = ∅ → (∏𝑘𝑥 𝐵𝑁) = (∏𝑘 ∈ ∅ 𝐵𝑁))
41, 3eqeq12d 2754 . 2 (𝑥 = ∅ → (∏𝑘𝑥 (𝐵𝑁) = (∏𝑘𝑥 𝐵𝑁) ↔ ∏𝑘 ∈ ∅ (𝐵𝑁) = (∏𝑘 ∈ ∅ 𝐵𝑁)))
5 prodeq1 15547 . . 3 (𝑥 = 𝑦 → ∏𝑘𝑥 (𝐵𝑁) = ∏𝑘𝑦 (𝐵𝑁))
6 prodeq1 15547 . . . 4 (𝑥 = 𝑦 → ∏𝑘𝑥 𝐵 = ∏𝑘𝑦 𝐵)
76oveq1d 7270 . . 3 (𝑥 = 𝑦 → (∏𝑘𝑥 𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁))
85, 7eqeq12d 2754 . 2 (𝑥 = 𝑦 → (∏𝑘𝑥 (𝐵𝑁) = (∏𝑘𝑥 𝐵𝑁) ↔ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)))
9 prodeq1 15547 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑥 (𝐵𝑁) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁))
10 prodeq1 15547 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1110oveq1d 7270 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑥 𝐵𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁))
129, 11eqeq12d 2754 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑥 (𝐵𝑁) = (∏𝑘𝑥 𝐵𝑁) ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁)))
13 prodeq1 15547 . . 3 (𝑥 = 𝐴 → ∏𝑘𝑥 (𝐵𝑁) = ∏𝑘𝐴 (𝐵𝑁))
14 prodeq1 15547 . . . 4 (𝑥 = 𝐴 → ∏𝑘𝑥 𝐵 = ∏𝑘𝐴 𝐵)
1514oveq1d 7270 . . 3 (𝑥 = 𝐴 → (∏𝑘𝑥 𝐵𝑁) = (∏𝑘𝐴 𝐵𝑁))
1613, 15eqeq12d 2754 . 2 (𝑥 = 𝐴 → (∏𝑘𝑥 (𝐵𝑁) = (∏𝑘𝑥 𝐵𝑁) ↔ ∏𝑘𝐴 (𝐵𝑁) = (∏𝑘𝐴 𝐵𝑁)))
17 fprodexp.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
1817nn0zd 12353 . . . . 5 (𝜑𝑁 ∈ ℤ)
19 1exp 13740 . . . . 5 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
2018, 19syl 17 . . . 4 (𝜑 → (1↑𝑁) = 1)
2120eqcomd 2744 . . 3 (𝜑 → 1 = (1↑𝑁))
22 prod0 15581 . . . 4 𝑘 ∈ ∅ (𝐵𝑁) = 1
2322a1i 11 . . 3 (𝜑 → ∏𝑘 ∈ ∅ (𝐵𝑁) = 1)
24 prod0 15581 . . . . 5 𝑘 ∈ ∅ 𝐵 = 1
2524oveq1i 7265 . . . 4 (∏𝑘 ∈ ∅ 𝐵𝑁) = (1↑𝑁)
2625a1i 11 . . 3 (𝜑 → (∏𝑘 ∈ ∅ 𝐵𝑁) = (1↑𝑁))
2721, 23, 263eqtr4d 2788 . 2 (𝜑 → ∏𝑘 ∈ ∅ (𝐵𝑁) = (∏𝑘 ∈ ∅ 𝐵𝑁))
28 fprodexp.kph . . . . . . . . 9 𝑘𝜑
29 nfv 1918 . . . . . . . . 9 𝑘(𝑦𝐴𝑧 ∈ (𝐴𝑦))
3028, 29nfan 1903 . . . . . . . 8 𝑘(𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦)))
31 fprodexp.a . . . . . . . . . . 11 (𝜑𝐴 ∈ Fin)
3231adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝐴 ∈ Fin)
33 simpr 484 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝑦𝐴)
34 ssfi 8918 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
3532, 33, 34syl2anc 583 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝑦 ∈ Fin)
3635adantrr 713 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
37 simpll 763 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝜑)
3833sselda 3917 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝑘𝐴)
39 fprodexp.b . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4037, 38, 39syl2anc 583 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
4140adantlrr 717 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
4230, 36, 41fprodclf 15630 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℂ)
43 simpl 482 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝜑)
44 simprr 769 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
4544eldifad 3895 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
46 nfv 1918 . . . . . . . . . . 11 𝑘 𝑧𝐴
4728, 46nfan 1903 . . . . . . . . . 10 𝑘(𝜑𝑧𝐴)
48 nfcsb1v 3853 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐵
4948nfel1 2922 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵 ∈ ℂ
5047, 49nfim 1900 . . . . . . . . 9 𝑘((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵 ∈ ℂ)
51 eleq1w 2821 . . . . . . . . . . 11 (𝑘 = 𝑧 → (𝑘𝐴𝑧𝐴))
5251anbi2d 628 . . . . . . . . . 10 (𝑘 = 𝑧 → ((𝜑𝑘𝐴) ↔ (𝜑𝑧𝐴)))
53 csbeq1a 3842 . . . . . . . . . . 11 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
5453eleq1d 2823 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ 𝑧 / 𝑘𝐵 ∈ ℂ))
5552, 54imbi12d 344 . . . . . . . . 9 (𝑘 = 𝑧 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵 ∈ ℂ)))
5650, 55, 39chvarfv 2236 . . . . . . . 8 ((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵 ∈ ℂ)
5743, 45, 56syl2anc 583 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
5817adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑁 ∈ ℕ0)
59 mulexp 13750 . . . . . . 7 ((∏𝑘𝑦 𝐵 ∈ ℂ ∧ 𝑧 / 𝑘𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
6042, 57, 58, 59syl3anc 1369 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
6160eqcomd 2744 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)) = ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁))
6261adantr 480 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)) = ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁))
63 nfcv 2906 . . . . . . . 8 𝑘
64 nfcv 2906 . . . . . . . 8 𝑘𝑁
6548, 63, 64nfov 7285 . . . . . . 7 𝑘(𝑧 / 𝑘𝐵𝑁)
6644eldifbd 3896 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
6717ad2antrr 722 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝑁 ∈ ℕ0)
6840, 67expcld 13792 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → (𝐵𝑁) ∈ ℂ)
6968adantlrr 717 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → (𝐵𝑁) ∈ ℂ)
7053oveq1d 7270 . . . . . . 7 (𝑘 = 𝑧 → (𝐵𝑁) = (𝑧 / 𝑘𝐵𝑁))
7157, 58expcld 13792 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑧 / 𝑘𝐵𝑁) ∈ ℂ)
7230, 65, 36, 44, 66, 69, 70, 71fprodsplitsn 15627 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘𝑦 (𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
7372adantr 480 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘𝑦 (𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
74 oveq1 7262 . . . . . 6 (∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁) → (∏𝑘𝑦 (𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
7574adantl 481 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → (∏𝑘𝑦 (𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
7673, 75eqtrd 2778 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
7730, 48, 36, 44, 66, 41, 53, 57fprodsplitsn 15627 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
7877adantr 480 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
7978oveq1d 7270 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁) = ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁))
8062, 76, 793eqtr4d 2788 . . 3 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁))
8180ex 412 . 2 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁)))
824, 8, 12, 16, 27, 81, 31findcard2d 8911 1 (𝜑 → ∏𝑘𝐴 (𝐵𝑁) = (∏𝑘𝐴 𝐵𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  csb 3828  cdif 3880  cun 3881  wss 3883  c0 4253  {csn 4558  (class class class)co 7255  Fincfn 8691  cc 10800  1c1 10803   · cmul 10807  0cn0 12163  cz 12249  cexp 13710  cprod 15543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-prod 15544
This theorem is referenced by:  etransclem35  43700
  Copyright terms: Public domain W3C validator