Step | Hyp | Ref
| Expression |
1 | | prodeq1 15619 |
. . 3
⊢ (𝑥 = ∅ → ∏𝑘 ∈ 𝑥 (𝐵↑𝑁) = ∏𝑘 ∈ ∅ (𝐵↑𝑁)) |
2 | | prodeq1 15619 |
. . . 4
⊢ (𝑥 = ∅ → ∏𝑘 ∈ 𝑥 𝐵 = ∏𝑘 ∈ ∅ 𝐵) |
3 | 2 | oveq1d 7290 |
. . 3
⊢ (𝑥 = ∅ → (∏𝑘 ∈ 𝑥 𝐵↑𝑁) = (∏𝑘 ∈ ∅ 𝐵↑𝑁)) |
4 | 1, 3 | eqeq12d 2754 |
. 2
⊢ (𝑥 = ∅ → (∏𝑘 ∈ 𝑥 (𝐵↑𝑁) = (∏𝑘 ∈ 𝑥 𝐵↑𝑁) ↔ ∏𝑘 ∈ ∅ (𝐵↑𝑁) = (∏𝑘 ∈ ∅ 𝐵↑𝑁))) |
5 | | prodeq1 15619 |
. . 3
⊢ (𝑥 = 𝑦 → ∏𝑘 ∈ 𝑥 (𝐵↑𝑁) = ∏𝑘 ∈ 𝑦 (𝐵↑𝑁)) |
6 | | prodeq1 15619 |
. . . 4
⊢ (𝑥 = 𝑦 → ∏𝑘 ∈ 𝑥 𝐵 = ∏𝑘 ∈ 𝑦 𝐵) |
7 | 6 | oveq1d 7290 |
. . 3
⊢ (𝑥 = 𝑦 → (∏𝑘 ∈ 𝑥 𝐵↑𝑁) = (∏𝑘 ∈ 𝑦 𝐵↑𝑁)) |
8 | 5, 7 | eqeq12d 2754 |
. 2
⊢ (𝑥 = 𝑦 → (∏𝑘 ∈ 𝑥 (𝐵↑𝑁) = (∏𝑘 ∈ 𝑥 𝐵↑𝑁) ↔ ∏𝑘 ∈ 𝑦 (𝐵↑𝑁) = (∏𝑘 ∈ 𝑦 𝐵↑𝑁))) |
9 | | prodeq1 15619 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑘 ∈ 𝑥 (𝐵↑𝑁) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵↑𝑁)) |
10 | | prodeq1 15619 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑘 ∈ 𝑥 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) |
11 | 10 | oveq1d 7290 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∏𝑘 ∈ 𝑥 𝐵↑𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵↑𝑁)) |
12 | 9, 11 | eqeq12d 2754 |
. 2
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∏𝑘 ∈ 𝑥 (𝐵↑𝑁) = (∏𝑘 ∈ 𝑥 𝐵↑𝑁) ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵↑𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵↑𝑁))) |
13 | | prodeq1 15619 |
. . 3
⊢ (𝑥 = 𝐴 → ∏𝑘 ∈ 𝑥 (𝐵↑𝑁) = ∏𝑘 ∈ 𝐴 (𝐵↑𝑁)) |
14 | | prodeq1 15619 |
. . . 4
⊢ (𝑥 = 𝐴 → ∏𝑘 ∈ 𝑥 𝐵 = ∏𝑘 ∈ 𝐴 𝐵) |
15 | 14 | oveq1d 7290 |
. . 3
⊢ (𝑥 = 𝐴 → (∏𝑘 ∈ 𝑥 𝐵↑𝑁) = (∏𝑘 ∈ 𝐴 𝐵↑𝑁)) |
16 | 13, 15 | eqeq12d 2754 |
. 2
⊢ (𝑥 = 𝐴 → (∏𝑘 ∈ 𝑥 (𝐵↑𝑁) = (∏𝑘 ∈ 𝑥 𝐵↑𝑁) ↔ ∏𝑘 ∈ 𝐴 (𝐵↑𝑁) = (∏𝑘 ∈ 𝐴 𝐵↑𝑁))) |
17 | | fprodexp.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
18 | 17 | nn0zd 12424 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℤ) |
19 | | 1exp 13812 |
. . . . 5
⊢ (𝑁 ∈ ℤ →
(1↑𝑁) =
1) |
20 | 18, 19 | syl 17 |
. . . 4
⊢ (𝜑 → (1↑𝑁) = 1) |
21 | 20 | eqcomd 2744 |
. . 3
⊢ (𝜑 → 1 = (1↑𝑁)) |
22 | | prod0 15653 |
. . . 4
⊢
∏𝑘 ∈
∅ (𝐵↑𝑁) = 1 |
23 | 22 | a1i 11 |
. . 3
⊢ (𝜑 → ∏𝑘 ∈ ∅ (𝐵↑𝑁) = 1) |
24 | | prod0 15653 |
. . . . 5
⊢
∏𝑘 ∈
∅ 𝐵 =
1 |
25 | 24 | oveq1i 7285 |
. . . 4
⊢
(∏𝑘 ∈
∅ 𝐵↑𝑁) = (1↑𝑁) |
26 | 25 | a1i 11 |
. . 3
⊢ (𝜑 → (∏𝑘 ∈ ∅ 𝐵↑𝑁) = (1↑𝑁)) |
27 | 21, 23, 26 | 3eqtr4d 2788 |
. 2
⊢ (𝜑 → ∏𝑘 ∈ ∅ (𝐵↑𝑁) = (∏𝑘 ∈ ∅ 𝐵↑𝑁)) |
28 | | fprodexp.kph |
. . . . . . . . 9
⊢
Ⅎ𝑘𝜑 |
29 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦)) |
30 | 28, 29 | nfan 1902 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) |
31 | | fprodexp.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ Fin) |
32 | 31 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ⊆ 𝐴) → 𝐴 ∈ Fin) |
33 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ⊆ 𝐴) → 𝑦 ⊆ 𝐴) |
34 | | ssfi 8956 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴) → 𝑦 ∈ Fin) |
35 | 32, 33, 34 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ⊆ 𝐴) → 𝑦 ∈ Fin) |
36 | 35 | adantrr 714 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑦 ∈ Fin) |
37 | | simpll 764 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ⊆ 𝐴) ∧ 𝑘 ∈ 𝑦) → 𝜑) |
38 | 33 | sselda 3921 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ⊆ 𝐴) ∧ 𝑘 ∈ 𝑦) → 𝑘 ∈ 𝐴) |
39 | | fprodexp.b |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
40 | 37, 38, 39 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ⊆ 𝐴) ∧ 𝑘 ∈ 𝑦) → 𝐵 ∈ ℂ) |
41 | 40 | adantlrr 718 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐵 ∈ ℂ) |
42 | 30, 36, 41 | fprodclf 15702 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ 𝑦 𝐵 ∈ ℂ) |
43 | | simpl 483 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝜑) |
44 | | simprr 770 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ (𝐴 ∖ 𝑦)) |
45 | 44 | eldifad 3899 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ 𝐴) |
46 | | nfv 1917 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘 𝑧 ∈ 𝐴 |
47 | 28, 46 | nfan 1902 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝜑 ∧ 𝑧 ∈ 𝐴) |
48 | | nfcsb1v 3857 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 |
49 | 48 | nfel1 2923 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ |
50 | 47, 49 | nfim 1899 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝜑 ∧ 𝑧 ∈ 𝐴) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) |
51 | | eleq1w 2821 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑧 → (𝑘 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
52 | 51 | anbi2d 629 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑧 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑧 ∈ 𝐴))) |
53 | | csbeq1a 3846 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
54 | 53 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ)) |
55 | 52, 54 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑘 = 𝑧 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ))) |
56 | 50, 55, 39 | chvarfv 2233 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) |
57 | 43, 45, 56 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) |
58 | 17 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑁 ∈
ℕ0) |
59 | | mulexp 13822 |
. . . . . . 7
⊢
((∏𝑘 ∈
𝑦 𝐵 ∈ ℂ ∧ ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) →
((∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵)↑𝑁) = ((∏𝑘 ∈ 𝑦 𝐵↑𝑁) · (⦋𝑧 / 𝑘⦌𝐵↑𝑁))) |
60 | 42, 57, 58, 59 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ((∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵)↑𝑁) = ((∏𝑘 ∈ 𝑦 𝐵↑𝑁) · (⦋𝑧 / 𝑘⦌𝐵↑𝑁))) |
61 | 60 | eqcomd 2744 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ((∏𝑘 ∈ 𝑦 𝐵↑𝑁) · (⦋𝑧 / 𝑘⦌𝐵↑𝑁)) = ((∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵)↑𝑁)) |
62 | 61 | adantr 481 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 (𝐵↑𝑁) = (∏𝑘 ∈ 𝑦 𝐵↑𝑁)) → ((∏𝑘 ∈ 𝑦 𝐵↑𝑁) · (⦋𝑧 / 𝑘⦌𝐵↑𝑁)) = ((∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵)↑𝑁)) |
63 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑘↑ |
64 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑘𝑁 |
65 | 48, 63, 64 | nfov 7305 |
. . . . . . 7
⊢
Ⅎ𝑘(⦋𝑧 / 𝑘⦌𝐵↑𝑁) |
66 | 44 | eldifbd 3900 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ¬ 𝑧 ∈ 𝑦) |
67 | 17 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ⊆ 𝐴) ∧ 𝑘 ∈ 𝑦) → 𝑁 ∈
ℕ0) |
68 | 40, 67 | expcld 13864 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ⊆ 𝐴) ∧ 𝑘 ∈ 𝑦) → (𝐵↑𝑁) ∈ ℂ) |
69 | 68 | adantlrr 718 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → (𝐵↑𝑁) ∈ ℂ) |
70 | 53 | oveq1d 7290 |
. . . . . . 7
⊢ (𝑘 = 𝑧 → (𝐵↑𝑁) = (⦋𝑧 / 𝑘⦌𝐵↑𝑁)) |
71 | 57, 58 | expcld 13864 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (⦋𝑧 / 𝑘⦌𝐵↑𝑁) ∈ ℂ) |
72 | 30, 65, 36, 44, 66, 69, 70, 71 | fprodsplitsn 15699 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵↑𝑁) = (∏𝑘 ∈ 𝑦 (𝐵↑𝑁) · (⦋𝑧 / 𝑘⦌𝐵↑𝑁))) |
73 | 72 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 (𝐵↑𝑁) = (∏𝑘 ∈ 𝑦 𝐵↑𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵↑𝑁) = (∏𝑘 ∈ 𝑦 (𝐵↑𝑁) · (⦋𝑧 / 𝑘⦌𝐵↑𝑁))) |
74 | | oveq1 7282 |
. . . . . 6
⊢
(∏𝑘 ∈
𝑦 (𝐵↑𝑁) = (∏𝑘 ∈ 𝑦 𝐵↑𝑁) → (∏𝑘 ∈ 𝑦 (𝐵↑𝑁) · (⦋𝑧 / 𝑘⦌𝐵↑𝑁)) = ((∏𝑘 ∈ 𝑦 𝐵↑𝑁) · (⦋𝑧 / 𝑘⦌𝐵↑𝑁))) |
75 | 74 | adantl 482 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 (𝐵↑𝑁) = (∏𝑘 ∈ 𝑦 𝐵↑𝑁)) → (∏𝑘 ∈ 𝑦 (𝐵↑𝑁) · (⦋𝑧 / 𝑘⦌𝐵↑𝑁)) = ((∏𝑘 ∈ 𝑦 𝐵↑𝑁) · (⦋𝑧 / 𝑘⦌𝐵↑𝑁))) |
76 | 73, 75 | eqtrd 2778 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 (𝐵↑𝑁) = (∏𝑘 ∈ 𝑦 𝐵↑𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵↑𝑁) = ((∏𝑘 ∈ 𝑦 𝐵↑𝑁) · (⦋𝑧 / 𝑘⦌𝐵↑𝑁))) |
77 | 30, 48, 36, 44, 66, 41, 53, 57 | fprodsplitsn 15699 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵)) |
78 | 77 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 (𝐵↑𝑁) = (∏𝑘 ∈ 𝑦 𝐵↑𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵)) |
79 | 78 | oveq1d 7290 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 (𝐵↑𝑁) = (∏𝑘 ∈ 𝑦 𝐵↑𝑁)) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵↑𝑁) = ((∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵)↑𝑁)) |
80 | 62, 76, 79 | 3eqtr4d 2788 |
. . 3
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 (𝐵↑𝑁) = (∏𝑘 ∈ 𝑦 𝐵↑𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵↑𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵↑𝑁)) |
81 | 80 | ex 413 |
. 2
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (∏𝑘 ∈ 𝑦 (𝐵↑𝑁) = (∏𝑘 ∈ 𝑦 𝐵↑𝑁) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵↑𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵↑𝑁))) |
82 | 4, 8, 12, 16, 27, 81, 31 | findcard2d 8949 |
1
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵↑𝑁) = (∏𝑘 ∈ 𝐴 𝐵↑𝑁)) |