Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodexp Structured version   Visualization version   GIF version

Theorem fprodexp 45585
Description: Positive integer exponentiation of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodexp.kph 𝑘𝜑
fprodexp.n (𝜑𝑁 ∈ ℕ0)
fprodexp.a (𝜑𝐴 ∈ Fin)
fprodexp.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fprodexp (𝜑 → ∏𝑘𝐴 (𝐵𝑁) = (∏𝑘𝐴 𝐵𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fprodexp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 15849 . . 3 (𝑥 = ∅ → ∏𝑘𝑥 (𝐵𝑁) = ∏𝑘 ∈ ∅ (𝐵𝑁))
2 prodeq1 15849 . . . 4 (𝑥 = ∅ → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
32oveq1d 7384 . . 3 (𝑥 = ∅ → (∏𝑘𝑥 𝐵𝑁) = (∏𝑘 ∈ ∅ 𝐵𝑁))
41, 3eqeq12d 2745 . 2 (𝑥 = ∅ → (∏𝑘𝑥 (𝐵𝑁) = (∏𝑘𝑥 𝐵𝑁) ↔ ∏𝑘 ∈ ∅ (𝐵𝑁) = (∏𝑘 ∈ ∅ 𝐵𝑁)))
5 prodeq1 15849 . . 3 (𝑥 = 𝑦 → ∏𝑘𝑥 (𝐵𝑁) = ∏𝑘𝑦 (𝐵𝑁))
6 prodeq1 15849 . . . 4 (𝑥 = 𝑦 → ∏𝑘𝑥 𝐵 = ∏𝑘𝑦 𝐵)
76oveq1d 7384 . . 3 (𝑥 = 𝑦 → (∏𝑘𝑥 𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁))
85, 7eqeq12d 2745 . 2 (𝑥 = 𝑦 → (∏𝑘𝑥 (𝐵𝑁) = (∏𝑘𝑥 𝐵𝑁) ↔ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)))
9 prodeq1 15849 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑥 (𝐵𝑁) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁))
10 prodeq1 15849 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1110oveq1d 7384 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑥 𝐵𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁))
129, 11eqeq12d 2745 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑥 (𝐵𝑁) = (∏𝑘𝑥 𝐵𝑁) ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁)))
13 prodeq1 15849 . . 3 (𝑥 = 𝐴 → ∏𝑘𝑥 (𝐵𝑁) = ∏𝑘𝐴 (𝐵𝑁))
14 prodeq1 15849 . . . 4 (𝑥 = 𝐴 → ∏𝑘𝑥 𝐵 = ∏𝑘𝐴 𝐵)
1514oveq1d 7384 . . 3 (𝑥 = 𝐴 → (∏𝑘𝑥 𝐵𝑁) = (∏𝑘𝐴 𝐵𝑁))
1613, 15eqeq12d 2745 . 2 (𝑥 = 𝐴 → (∏𝑘𝑥 (𝐵𝑁) = (∏𝑘𝑥 𝐵𝑁) ↔ ∏𝑘𝐴 (𝐵𝑁) = (∏𝑘𝐴 𝐵𝑁)))
17 fprodexp.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
1817nn0zd 12531 . . . . 5 (𝜑𝑁 ∈ ℤ)
19 1exp 14032 . . . . 5 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
2018, 19syl 17 . . . 4 (𝜑 → (1↑𝑁) = 1)
2120eqcomd 2735 . . 3 (𝜑 → 1 = (1↑𝑁))
22 prod0 15885 . . . 4 𝑘 ∈ ∅ (𝐵𝑁) = 1
2322a1i 11 . . 3 (𝜑 → ∏𝑘 ∈ ∅ (𝐵𝑁) = 1)
24 prod0 15885 . . . . 5 𝑘 ∈ ∅ 𝐵 = 1
2524oveq1i 7379 . . . 4 (∏𝑘 ∈ ∅ 𝐵𝑁) = (1↑𝑁)
2625a1i 11 . . 3 (𝜑 → (∏𝑘 ∈ ∅ 𝐵𝑁) = (1↑𝑁))
2721, 23, 263eqtr4d 2774 . 2 (𝜑 → ∏𝑘 ∈ ∅ (𝐵𝑁) = (∏𝑘 ∈ ∅ 𝐵𝑁))
28 fprodexp.kph . . . . . . . . 9 𝑘𝜑
29 nfv 1914 . . . . . . . . 9 𝑘(𝑦𝐴𝑧 ∈ (𝐴𝑦))
3028, 29nfan 1899 . . . . . . . 8 𝑘(𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦)))
31 fprodexp.a . . . . . . . . . . 11 (𝜑𝐴 ∈ Fin)
3231adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝐴 ∈ Fin)
33 simpr 484 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝑦𝐴)
34 ssfi 9114 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
3532, 33, 34syl2anc 584 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝑦 ∈ Fin)
3635adantrr 717 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
37 simpll 766 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝜑)
3833sselda 3943 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝑘𝐴)
39 fprodexp.b . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4037, 38, 39syl2anc 584 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
4140adantlrr 721 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
4230, 36, 41fprodclf 15934 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℂ)
43 simpl 482 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝜑)
44 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
4544eldifad 3923 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
46 nfv 1914 . . . . . . . . . . 11 𝑘 𝑧𝐴
4728, 46nfan 1899 . . . . . . . . . 10 𝑘(𝜑𝑧𝐴)
48 nfcsb1v 3883 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐵
4948nfel1 2908 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵 ∈ ℂ
5047, 49nfim 1896 . . . . . . . . 9 𝑘((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵 ∈ ℂ)
51 eleq1w 2811 . . . . . . . . . . 11 (𝑘 = 𝑧 → (𝑘𝐴𝑧𝐴))
5251anbi2d 630 . . . . . . . . . 10 (𝑘 = 𝑧 → ((𝜑𝑘𝐴) ↔ (𝜑𝑧𝐴)))
53 csbeq1a 3873 . . . . . . . . . . 11 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
5453eleq1d 2813 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ 𝑧 / 𝑘𝐵 ∈ ℂ))
5552, 54imbi12d 344 . . . . . . . . 9 (𝑘 = 𝑧 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵 ∈ ℂ)))
5650, 55, 39chvarfv 2241 . . . . . . . 8 ((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵 ∈ ℂ)
5743, 45, 56syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
5817adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑁 ∈ ℕ0)
59 mulexp 14042 . . . . . . 7 ((∏𝑘𝑦 𝐵 ∈ ℂ ∧ 𝑧 / 𝑘𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
6042, 57, 58, 59syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
6160eqcomd 2735 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)) = ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁))
6261adantr 480 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)) = ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁))
63 nfcv 2891 . . . . . . . 8 𝑘
64 nfcv 2891 . . . . . . . 8 𝑘𝑁
6548, 63, 64nfov 7399 . . . . . . 7 𝑘(𝑧 / 𝑘𝐵𝑁)
6644eldifbd 3924 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
6717ad2antrr 726 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝑁 ∈ ℕ0)
6840, 67expcld 14087 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → (𝐵𝑁) ∈ ℂ)
6968adantlrr 721 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → (𝐵𝑁) ∈ ℂ)
7053oveq1d 7384 . . . . . . 7 (𝑘 = 𝑧 → (𝐵𝑁) = (𝑧 / 𝑘𝐵𝑁))
7157, 58expcld 14087 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑧 / 𝑘𝐵𝑁) ∈ ℂ)
7230, 65, 36, 44, 66, 69, 70, 71fprodsplitsn 15931 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘𝑦 (𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
7372adantr 480 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘𝑦 (𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
74 oveq1 7376 . . . . . 6 (∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁) → (∏𝑘𝑦 (𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
7574adantl 481 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → (∏𝑘𝑦 (𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
7673, 75eqtrd 2764 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = ((∏𝑘𝑦 𝐵𝑁) · (𝑧 / 𝑘𝐵𝑁)))
7730, 48, 36, 44, 66, 41, 53, 57fprodsplitsn 15931 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
7877adantr 480 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
7978oveq1d 7384 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁) = ((∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)↑𝑁))
8062, 76, 793eqtr4d 2774 . . 3 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁))
8180ex 412 . 2 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 (𝐵𝑁) = (∏𝑘𝑦 𝐵𝑁) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵𝑁) = (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑁)))
824, 8, 12, 16, 27, 81, 31findcard2d 9107 1 (𝜑 → ∏𝑘𝐴 (𝐵𝑁) = (∏𝑘𝐴 𝐵𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  csb 3859  cdif 3908  cun 3909  wss 3911  c0 4292  {csn 4585  (class class class)co 7369  Fincfn 8895  cc 11042  1c1 11045   · cmul 11049  0cn0 12418  cz 12505  cexp 14002  cprod 15845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-prod 15846
This theorem is referenced by:  etransclem35  46260
  Copyright terms: Public domain W3C validator