MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mappwen Structured version   Visualization version   GIF version

Theorem mappwen 10141
Description: Power rule for cardinal arithmetic. Theorem 11.21 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
mappwen (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴m 𝐵) ≈ 𝒫 𝐵)

Proof of Theorem mappwen
StepHypRef Expression
1 simprr 771 . . . . 5 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → 𝐴 ≼ 𝒫 𝐵)
2 pw2eng 9107 . . . . . 6 (𝐵 ∈ dom card → 𝒫 𝐵 ≈ (2om 𝐵))
32ad2antrr 724 . . . . 5 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → 𝒫 𝐵 ≈ (2om 𝐵))
4 domentr 9038 . . . . 5 ((𝐴 ≼ 𝒫 𝐵 ∧ 𝒫 𝐵 ≈ (2om 𝐵)) → 𝐴 ≼ (2om 𝐵))
51, 3, 4syl2anc 582 . . . 4 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → 𝐴 ≼ (2om 𝐵))
6 mapdom1 9171 . . . 4 (𝐴 ≼ (2om 𝐵) → (𝐴m 𝐵) ≼ ((2om 𝐵) ↑m 𝐵))
75, 6syl 17 . . 3 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴m 𝐵) ≼ ((2om 𝐵) ↑m 𝐵))
8 2on 8505 . . . . . 6 2o ∈ On
9 simpll 765 . . . . . 6 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → 𝐵 ∈ dom card)
10 mapxpen 9172 . . . . . 6 ((2o ∈ On ∧ 𝐵 ∈ dom card ∧ 𝐵 ∈ dom card) → ((2om 𝐵) ↑m 𝐵) ≈ (2om (𝐵 × 𝐵)))
118, 9, 9, 10mp3an2i 1462 . . . . 5 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → ((2om 𝐵) ↑m 𝐵) ≈ (2om (𝐵 × 𝐵)))
128elexi 3491 . . . . . . 7 2o ∈ V
1312enref 9010 . . . . . 6 2o ≈ 2o
14 infxpidm2 10046 . . . . . . 7 ((𝐵 ∈ dom card ∧ ω ≼ 𝐵) → (𝐵 × 𝐵) ≈ 𝐵)
1514adantr 479 . . . . . 6 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐵 × 𝐵) ≈ 𝐵)
16 mapen 9170 . . . . . 6 ((2o ≈ 2o ∧ (𝐵 × 𝐵) ≈ 𝐵) → (2om (𝐵 × 𝐵)) ≈ (2om 𝐵))
1713, 15, 16sylancr 585 . . . . 5 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (2om (𝐵 × 𝐵)) ≈ (2om 𝐵))
18 entr 9031 . . . . 5 ((((2om 𝐵) ↑m 𝐵) ≈ (2om (𝐵 × 𝐵)) ∧ (2om (𝐵 × 𝐵)) ≈ (2om 𝐵)) → ((2om 𝐵) ↑m 𝐵) ≈ (2om 𝐵))
1911, 17, 18syl2anc 582 . . . 4 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → ((2om 𝐵) ↑m 𝐵) ≈ (2om 𝐵))
203ensymd 9030 . . . 4 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (2om 𝐵) ≈ 𝒫 𝐵)
21 entr 9031 . . . 4 ((((2om 𝐵) ↑m 𝐵) ≈ (2om 𝐵) ∧ (2om 𝐵) ≈ 𝒫 𝐵) → ((2om 𝐵) ↑m 𝐵) ≈ 𝒫 𝐵)
2219, 20, 21syl2anc 582 . . 3 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → ((2om 𝐵) ↑m 𝐵) ≈ 𝒫 𝐵)
23 domentr 9038 . . 3 (((𝐴m 𝐵) ≼ ((2om 𝐵) ↑m 𝐵) ∧ ((2om 𝐵) ↑m 𝐵) ≈ 𝒫 𝐵) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
247, 22, 23syl2anc 582 . 2 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
25 mapdom1 9171 . . . 4 (2o𝐴 → (2om 𝐵) ≼ (𝐴m 𝐵))
2625ad2antrl 726 . . 3 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (2om 𝐵) ≼ (𝐴m 𝐵))
27 endomtr 9037 . . 3 ((𝒫 𝐵 ≈ (2om 𝐵) ∧ (2om 𝐵) ≼ (𝐴m 𝐵)) → 𝒫 𝐵 ≼ (𝐴m 𝐵))
283, 26, 27syl2anc 582 . 2 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → 𝒫 𝐵 ≼ (𝐴m 𝐵))
29 sbth 9122 . 2 (((𝐴m 𝐵) ≼ 𝒫 𝐵 ∧ 𝒫 𝐵 ≼ (𝐴m 𝐵)) → (𝐴m 𝐵) ≈ 𝒫 𝐵)
3024, 28, 29syl2anc 582 1 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴m 𝐵) ≈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2098  𝒫 cpw 4604   class class class wbr 5150   × cxp 5678  dom cdm 5680  Oncon0 6372  (class class class)co 7424  ωcom 7874  2oc2o 8485  m cmap 8849  cen 8965  cdom 8966  cardccrd 9964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-inf2 9670
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-2o 8492  df-er 8729  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-oi 9539  df-card 9968
This theorem is referenced by:  alephexp1  10608  hauspwdom  23423
  Copyright terms: Public domain W3C validator