MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mappwen Structured version   Visualization version   GIF version

Theorem mappwen 10181
Description: Power rule for cardinal arithmetic. Theorem 11.21 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
mappwen (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴m 𝐵) ≈ 𝒫 𝐵)

Proof of Theorem mappwen
StepHypRef Expression
1 simprr 772 . . . . 5 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → 𝐴 ≼ 𝒫 𝐵)
2 pw2eng 9144 . . . . . 6 (𝐵 ∈ dom card → 𝒫 𝐵 ≈ (2om 𝐵))
32ad2antrr 725 . . . . 5 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → 𝒫 𝐵 ≈ (2om 𝐵))
4 domentr 9073 . . . . 5 ((𝐴 ≼ 𝒫 𝐵 ∧ 𝒫 𝐵 ≈ (2om 𝐵)) → 𝐴 ≼ (2om 𝐵))
51, 3, 4syl2anc 583 . . . 4 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → 𝐴 ≼ (2om 𝐵))
6 mapdom1 9208 . . . 4 (𝐴 ≼ (2om 𝐵) → (𝐴m 𝐵) ≼ ((2om 𝐵) ↑m 𝐵))
75, 6syl 17 . . 3 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴m 𝐵) ≼ ((2om 𝐵) ↑m 𝐵))
8 2on 8536 . . . . . 6 2o ∈ On
9 simpll 766 . . . . . 6 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → 𝐵 ∈ dom card)
10 mapxpen 9209 . . . . . 6 ((2o ∈ On ∧ 𝐵 ∈ dom card ∧ 𝐵 ∈ dom card) → ((2om 𝐵) ↑m 𝐵) ≈ (2om (𝐵 × 𝐵)))
118, 9, 9, 10mp3an2i 1466 . . . . 5 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → ((2om 𝐵) ↑m 𝐵) ≈ (2om (𝐵 × 𝐵)))
128elexi 3511 . . . . . . 7 2o ∈ V
1312enref 9045 . . . . . 6 2o ≈ 2o
14 infxpidm2 10086 . . . . . . 7 ((𝐵 ∈ dom card ∧ ω ≼ 𝐵) → (𝐵 × 𝐵) ≈ 𝐵)
1514adantr 480 . . . . . 6 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐵 × 𝐵) ≈ 𝐵)
16 mapen 9207 . . . . . 6 ((2o ≈ 2o ∧ (𝐵 × 𝐵) ≈ 𝐵) → (2om (𝐵 × 𝐵)) ≈ (2om 𝐵))
1713, 15, 16sylancr 586 . . . . 5 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (2om (𝐵 × 𝐵)) ≈ (2om 𝐵))
18 entr 9066 . . . . 5 ((((2om 𝐵) ↑m 𝐵) ≈ (2om (𝐵 × 𝐵)) ∧ (2om (𝐵 × 𝐵)) ≈ (2om 𝐵)) → ((2om 𝐵) ↑m 𝐵) ≈ (2om 𝐵))
1911, 17, 18syl2anc 583 . . . 4 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → ((2om 𝐵) ↑m 𝐵) ≈ (2om 𝐵))
203ensymd 9065 . . . 4 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (2om 𝐵) ≈ 𝒫 𝐵)
21 entr 9066 . . . 4 ((((2om 𝐵) ↑m 𝐵) ≈ (2om 𝐵) ∧ (2om 𝐵) ≈ 𝒫 𝐵) → ((2om 𝐵) ↑m 𝐵) ≈ 𝒫 𝐵)
2219, 20, 21syl2anc 583 . . 3 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → ((2om 𝐵) ↑m 𝐵) ≈ 𝒫 𝐵)
23 domentr 9073 . . 3 (((𝐴m 𝐵) ≼ ((2om 𝐵) ↑m 𝐵) ∧ ((2om 𝐵) ↑m 𝐵) ≈ 𝒫 𝐵) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
247, 22, 23syl2anc 583 . 2 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
25 mapdom1 9208 . . . 4 (2o𝐴 → (2om 𝐵) ≼ (𝐴m 𝐵))
2625ad2antrl 727 . . 3 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (2om 𝐵) ≼ (𝐴m 𝐵))
27 endomtr 9072 . . 3 ((𝒫 𝐵 ≈ (2om 𝐵) ∧ (2om 𝐵) ≼ (𝐴m 𝐵)) → 𝒫 𝐵 ≼ (𝐴m 𝐵))
283, 26, 27syl2anc 583 . 2 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → 𝒫 𝐵 ≼ (𝐴m 𝐵))
29 sbth 9159 . 2 (((𝐴m 𝐵) ≼ 𝒫 𝐵 ∧ 𝒫 𝐵 ≼ (𝐴m 𝐵)) → (𝐴m 𝐵) ≈ 𝒫 𝐵)
3024, 28, 29syl2anc 583 1 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴m 𝐵) ≈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  𝒫 cpw 4622   class class class wbr 5166   × cxp 5698  dom cdm 5700  Oncon0 6395  (class class class)co 7448  ωcom 7903  2oc2o 8516  m cmap 8884  cen 9000  cdom 9001  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-card 10008
This theorem is referenced by:  alephexp1  10648  hauspwdom  23530
  Copyright terms: Public domain W3C validator