Proof of Theorem mappwen
Step | Hyp | Ref
| Expression |
1 | | simprr 770 |
. . . . 5
⊢ (((𝐵 ∈ dom card ∧ ω
≼ 𝐵) ∧
(2o ≼ 𝐴
∧ 𝐴 ≼ 𝒫
𝐵)) → 𝐴 ≼ 𝒫 𝐵) |
2 | | pw2eng 8865 |
. . . . . 6
⊢ (𝐵 ∈ dom card →
𝒫 𝐵 ≈
(2o ↑m 𝐵)) |
3 | 2 | ad2antrr 723 |
. . . . 5
⊢ (((𝐵 ∈ dom card ∧ ω
≼ 𝐵) ∧
(2o ≼ 𝐴
∧ 𝐴 ≼ 𝒫
𝐵)) → 𝒫 𝐵 ≈ (2o
↑m 𝐵)) |
4 | | domentr 8799 |
. . . . 5
⊢ ((𝐴 ≼ 𝒫 𝐵 ∧ 𝒫 𝐵 ≈ (2o
↑m 𝐵))
→ 𝐴 ≼
(2o ↑m 𝐵)) |
5 | 1, 3, 4 | syl2anc 584 |
. . . 4
⊢ (((𝐵 ∈ dom card ∧ ω
≼ 𝐵) ∧
(2o ≼ 𝐴
∧ 𝐴 ≼ 𝒫
𝐵)) → 𝐴 ≼ (2o
↑m 𝐵)) |
6 | | mapdom1 8929 |
. . . 4
⊢ (𝐴 ≼ (2o
↑m 𝐵)
→ (𝐴
↑m 𝐵)
≼ ((2o ↑m 𝐵) ↑m 𝐵)) |
7 | 5, 6 | syl 17 |
. . 3
⊢ (((𝐵 ∈ dom card ∧ ω
≼ 𝐵) ∧
(2o ≼ 𝐴
∧ 𝐴 ≼ 𝒫
𝐵)) → (𝐴 ↑m 𝐵) ≼ ((2o
↑m 𝐵)
↑m 𝐵)) |
8 | | 2on 8311 |
. . . . . 6
⊢
2o ∈ On |
9 | | simpll 764 |
. . . . . 6
⊢ (((𝐵 ∈ dom card ∧ ω
≼ 𝐵) ∧
(2o ≼ 𝐴
∧ 𝐴 ≼ 𝒫
𝐵)) → 𝐵 ∈ dom
card) |
10 | | mapxpen 8930 |
. . . . . 6
⊢
((2o ∈ On ∧ 𝐵 ∈ dom card ∧ 𝐵 ∈ dom card) → ((2o
↑m 𝐵)
↑m 𝐵)
≈ (2o ↑m (𝐵 × 𝐵))) |
11 | 8, 9, 9, 10 | mp3an2i 1465 |
. . . . 5
⊢ (((𝐵 ∈ dom card ∧ ω
≼ 𝐵) ∧
(2o ≼ 𝐴
∧ 𝐴 ≼ 𝒫
𝐵)) → ((2o
↑m 𝐵)
↑m 𝐵)
≈ (2o ↑m (𝐵 × 𝐵))) |
12 | 8 | elexi 3451 |
. . . . . . 7
⊢
2o ∈ V |
13 | 12 | enref 8773 |
. . . . . 6
⊢
2o ≈ 2o |
14 | | infxpidm2 9773 |
. . . . . . 7
⊢ ((𝐵 ∈ dom card ∧ ω
≼ 𝐵) → (𝐵 × 𝐵) ≈ 𝐵) |
15 | 14 | adantr 481 |
. . . . . 6
⊢ (((𝐵 ∈ dom card ∧ ω
≼ 𝐵) ∧
(2o ≼ 𝐴
∧ 𝐴 ≼ 𝒫
𝐵)) → (𝐵 × 𝐵) ≈ 𝐵) |
16 | | mapen 8928 |
. . . . . 6
⊢
((2o ≈ 2o ∧ (𝐵 × 𝐵) ≈ 𝐵) → (2o ↑m
(𝐵 × 𝐵)) ≈ (2o
↑m 𝐵)) |
17 | 13, 15, 16 | sylancr 587 |
. . . . 5
⊢ (((𝐵 ∈ dom card ∧ ω
≼ 𝐵) ∧
(2o ≼ 𝐴
∧ 𝐴 ≼ 𝒫
𝐵)) → (2o
↑m (𝐵
× 𝐵)) ≈
(2o ↑m 𝐵)) |
18 | | entr 8792 |
. . . . 5
⊢
((((2o ↑m 𝐵) ↑m 𝐵) ≈ (2o ↑m
(𝐵 × 𝐵)) ∧ (2o
↑m (𝐵
× 𝐵)) ≈
(2o ↑m 𝐵)) → ((2o ↑m
𝐵) ↑m 𝐵) ≈ (2o
↑m 𝐵)) |
19 | 11, 17, 18 | syl2anc 584 |
. . . 4
⊢ (((𝐵 ∈ dom card ∧ ω
≼ 𝐵) ∧
(2o ≼ 𝐴
∧ 𝐴 ≼ 𝒫
𝐵)) → ((2o
↑m 𝐵)
↑m 𝐵)
≈ (2o ↑m 𝐵)) |
20 | 3 | ensymd 8791 |
. . . 4
⊢ (((𝐵 ∈ dom card ∧ ω
≼ 𝐵) ∧
(2o ≼ 𝐴
∧ 𝐴 ≼ 𝒫
𝐵)) → (2o
↑m 𝐵)
≈ 𝒫 𝐵) |
21 | | entr 8792 |
. . . 4
⊢
((((2o ↑m 𝐵) ↑m 𝐵) ≈ (2o ↑m
𝐵) ∧ (2o
↑m 𝐵)
≈ 𝒫 𝐵) →
((2o ↑m 𝐵) ↑m 𝐵) ≈ 𝒫 𝐵) |
22 | 19, 20, 21 | syl2anc 584 |
. . 3
⊢ (((𝐵 ∈ dom card ∧ ω
≼ 𝐵) ∧
(2o ≼ 𝐴
∧ 𝐴 ≼ 𝒫
𝐵)) → ((2o
↑m 𝐵)
↑m 𝐵)
≈ 𝒫 𝐵) |
23 | | domentr 8799 |
. . 3
⊢ (((𝐴 ↑m 𝐵) ≼ ((2o
↑m 𝐵)
↑m 𝐵) ∧
((2o ↑m 𝐵) ↑m 𝐵) ≈ 𝒫 𝐵) → (𝐴 ↑m 𝐵) ≼ 𝒫 𝐵) |
24 | 7, 22, 23 | syl2anc 584 |
. 2
⊢ (((𝐵 ∈ dom card ∧ ω
≼ 𝐵) ∧
(2o ≼ 𝐴
∧ 𝐴 ≼ 𝒫
𝐵)) → (𝐴 ↑m 𝐵) ≼ 𝒫 𝐵) |
25 | | mapdom1 8929 |
. . . 4
⊢
(2o ≼ 𝐴 → (2o ↑m
𝐵) ≼ (𝐴 ↑m 𝐵)) |
26 | 25 | ad2antrl 725 |
. . 3
⊢ (((𝐵 ∈ dom card ∧ ω
≼ 𝐵) ∧
(2o ≼ 𝐴
∧ 𝐴 ≼ 𝒫
𝐵)) → (2o
↑m 𝐵)
≼ (𝐴
↑m 𝐵)) |
27 | | endomtr 8798 |
. . 3
⊢
((𝒫 𝐵
≈ (2o ↑m 𝐵) ∧ (2o ↑m
𝐵) ≼ (𝐴 ↑m 𝐵)) → 𝒫 𝐵 ≼ (𝐴 ↑m 𝐵)) |
28 | 3, 26, 27 | syl2anc 584 |
. 2
⊢ (((𝐵 ∈ dom card ∧ ω
≼ 𝐵) ∧
(2o ≼ 𝐴
∧ 𝐴 ≼ 𝒫
𝐵)) → 𝒫 𝐵 ≼ (𝐴 ↑m 𝐵)) |
29 | | sbth 8880 |
. 2
⊢ (((𝐴 ↑m 𝐵) ≼ 𝒫 𝐵 ∧ 𝒫 𝐵 ≼ (𝐴 ↑m 𝐵)) → (𝐴 ↑m 𝐵) ≈ 𝒫 𝐵) |
30 | 24, 28, 29 | syl2anc 584 |
1
⊢ (((𝐵 ∈ dom card ∧ ω
≼ 𝐵) ∧
(2o ≼ 𝐴
∧ 𝐴 ≼ 𝒫
𝐵)) → (𝐴 ↑m 𝐵) ≈ 𝒫 𝐵) |