MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mappwen Structured version   Visualization version   GIF version

Theorem mappwen 10003
Description: Power rule for cardinal arithmetic. Theorem 11.21 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
mappwen (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴m 𝐵) ≈ 𝒫 𝐵)

Proof of Theorem mappwen
StepHypRef Expression
1 simprr 772 . . . . 5 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → 𝐴 ≼ 𝒫 𝐵)
2 pw2eng 8996 . . . . . 6 (𝐵 ∈ dom card → 𝒫 𝐵 ≈ (2om 𝐵))
32ad2antrr 726 . . . . 5 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → 𝒫 𝐵 ≈ (2om 𝐵))
4 domentr 8935 . . . . 5 ((𝐴 ≼ 𝒫 𝐵 ∧ 𝒫 𝐵 ≈ (2om 𝐵)) → 𝐴 ≼ (2om 𝐵))
51, 3, 4syl2anc 584 . . . 4 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → 𝐴 ≼ (2om 𝐵))
6 mapdom1 9055 . . . 4 (𝐴 ≼ (2om 𝐵) → (𝐴m 𝐵) ≼ ((2om 𝐵) ↑m 𝐵))
75, 6syl 17 . . 3 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴m 𝐵) ≼ ((2om 𝐵) ↑m 𝐵))
8 2on 8398 . . . . . 6 2o ∈ On
9 simpll 766 . . . . . 6 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → 𝐵 ∈ dom card)
10 mapxpen 9056 . . . . . 6 ((2o ∈ On ∧ 𝐵 ∈ dom card ∧ 𝐵 ∈ dom card) → ((2om 𝐵) ↑m 𝐵) ≈ (2om (𝐵 × 𝐵)))
118, 9, 9, 10mp3an2i 1468 . . . . 5 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → ((2om 𝐵) ↑m 𝐵) ≈ (2om (𝐵 × 𝐵)))
128elexi 3459 . . . . . . 7 2o ∈ V
1312enref 8907 . . . . . 6 2o ≈ 2o
14 infxpidm2 9908 . . . . . . 7 ((𝐵 ∈ dom card ∧ ω ≼ 𝐵) → (𝐵 × 𝐵) ≈ 𝐵)
1514adantr 480 . . . . . 6 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐵 × 𝐵) ≈ 𝐵)
16 mapen 9054 . . . . . 6 ((2o ≈ 2o ∧ (𝐵 × 𝐵) ≈ 𝐵) → (2om (𝐵 × 𝐵)) ≈ (2om 𝐵))
1713, 15, 16sylancr 587 . . . . 5 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (2om (𝐵 × 𝐵)) ≈ (2om 𝐵))
18 entr 8928 . . . . 5 ((((2om 𝐵) ↑m 𝐵) ≈ (2om (𝐵 × 𝐵)) ∧ (2om (𝐵 × 𝐵)) ≈ (2om 𝐵)) → ((2om 𝐵) ↑m 𝐵) ≈ (2om 𝐵))
1911, 17, 18syl2anc 584 . . . 4 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → ((2om 𝐵) ↑m 𝐵) ≈ (2om 𝐵))
203ensymd 8927 . . . 4 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (2om 𝐵) ≈ 𝒫 𝐵)
21 entr 8928 . . . 4 ((((2om 𝐵) ↑m 𝐵) ≈ (2om 𝐵) ∧ (2om 𝐵) ≈ 𝒫 𝐵) → ((2om 𝐵) ↑m 𝐵) ≈ 𝒫 𝐵)
2219, 20, 21syl2anc 584 . . 3 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → ((2om 𝐵) ↑m 𝐵) ≈ 𝒫 𝐵)
23 domentr 8935 . . 3 (((𝐴m 𝐵) ≼ ((2om 𝐵) ↑m 𝐵) ∧ ((2om 𝐵) ↑m 𝐵) ≈ 𝒫 𝐵) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
247, 22, 23syl2anc 584 . 2 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
25 mapdom1 9055 . . . 4 (2o𝐴 → (2om 𝐵) ≼ (𝐴m 𝐵))
2625ad2antrl 728 . . 3 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (2om 𝐵) ≼ (𝐴m 𝐵))
27 endomtr 8934 . . 3 ((𝒫 𝐵 ≈ (2om 𝐵) ∧ (2om 𝐵) ≼ (𝐴m 𝐵)) → 𝒫 𝐵 ≼ (𝐴m 𝐵))
283, 26, 27syl2anc 584 . 2 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → 𝒫 𝐵 ≼ (𝐴m 𝐵))
29 sbth 9010 . 2 (((𝐴m 𝐵) ≼ 𝒫 𝐵 ∧ 𝒫 𝐵 ≼ (𝐴m 𝐵)) → (𝐴m 𝐵) ≈ 𝒫 𝐵)
3024, 28, 29syl2anc 584 1 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴m 𝐵) ≈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  𝒫 cpw 4547   class class class wbr 5089   × cxp 5612  dom cdm 5614  Oncon0 6306  (class class class)co 7346  ωcom 7796  2oc2o 8379  m cmap 8750  cen 8866  cdom 8867  cardccrd 9828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-oi 9396  df-card 9832
This theorem is referenced by:  alephexp1  10470  hauspwdom  23416
  Copyright terms: Public domain W3C validator