| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restabs | Structured version Visualization version GIF version | ||
| Description: Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.) |
| Ref | Expression |
|---|---|
| restabs | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝐽 ∈ 𝑉) | |
| 2 | simp3 1138 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝑇 ∈ 𝑊) | |
| 3 | ssexg 5293 | . . . 4 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝑆 ∈ V) | |
| 4 | 3 | 3adant1 1130 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝑆 ∈ V) |
| 5 | restco 23100 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊 ∧ 𝑆 ∈ V) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t (𝑇 ∩ 𝑆))) | |
| 6 | 1, 2, 4, 5 | syl3anc 1373 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t (𝑇 ∩ 𝑆))) |
| 7 | simp2 1137 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝑆 ⊆ 𝑇) | |
| 8 | sseqin2 4198 | . . . 4 ⊢ (𝑆 ⊆ 𝑇 ↔ (𝑇 ∩ 𝑆) = 𝑆) | |
| 9 | 7, 8 | sylib 218 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → (𝑇 ∩ 𝑆) = 𝑆) |
| 10 | 9 | oveq2d 7419 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → (𝐽 ↾t (𝑇 ∩ 𝑆)) = (𝐽 ↾t 𝑆)) |
| 11 | 6, 10 | eqtrd 2770 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 (class class class)co 7403 ↾t crest 17432 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-rest 17434 |
| This theorem is referenced by: restcnrm 23298 fiuncmp 23340 subislly 23417 restnlly 23418 islly2 23420 llyrest 23421 nllyrest 23422 llyidm 23424 nllyidm 23425 cldllycmp 23431 txkgen 23588 rerest 24741 xrrest 24745 cnmpopc 24871 cnheiborlem 24902 pcoass 24973 limcres 25837 perfdvf 25854 dvreslem 25860 dvres2lem 25861 dvaddbr 25890 dvmulbr 25891 dvmulbrOLD 25892 dvcnvrelem2 25973 psercn 26386 abelth 26401 cxpcn2 26706 cxpcn3 26708 lmlimxrge0 33925 pnfneige0 33928 cvmsss2 35242 cvmliftlem8 35260 cvmliftlem10 35262 cvmlift2lem9 35279 ivthALT 36299 limcresiooub 45619 limcresioolb 45620 cncfuni 45863 cncfiooicclem1 45870 itgsubsticclem 45952 dirkercncflem4 46083 fourierdlem32 46116 fourierdlem33 46117 fourierdlem62 46145 fouriersw 46208 smfco 46779 |
| Copyright terms: Public domain | W3C validator |