MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restabs Structured version   Visualization version   GIF version

Theorem restabs 23068
Description: Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restabs ((𝐽𝑉𝑆𝑇𝑇𝑊) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t 𝑆))

Proof of Theorem restabs
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐽𝑉𝑆𝑇𝑇𝑊) → 𝐽𝑉)
2 simp3 1138 . . 3 ((𝐽𝑉𝑆𝑇𝑇𝑊) → 𝑇𝑊)
3 ssexg 5265 . . . 4 ((𝑆𝑇𝑇𝑊) → 𝑆 ∈ V)
433adant1 1130 . . 3 ((𝐽𝑉𝑆𝑇𝑇𝑊) → 𝑆 ∈ V)
5 restco 23067 . . 3 ((𝐽𝑉𝑇𝑊𝑆 ∈ V) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t (𝑇𝑆)))
61, 2, 4, 5syl3anc 1373 . 2 ((𝐽𝑉𝑆𝑇𝑇𝑊) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t (𝑇𝑆)))
7 simp2 1137 . . . 4 ((𝐽𝑉𝑆𝑇𝑇𝑊) → 𝑆𝑇)
8 sseqin2 4176 . . . 4 (𝑆𝑇 ↔ (𝑇𝑆) = 𝑆)
97, 8sylib 218 . . 3 ((𝐽𝑉𝑆𝑇𝑇𝑊) → (𝑇𝑆) = 𝑆)
109oveq2d 7369 . 2 ((𝐽𝑉𝑆𝑇𝑇𝑊) → (𝐽t (𝑇𝑆)) = (𝐽t 𝑆))
116, 10eqtrd 2764 1 ((𝐽𝑉𝑆𝑇𝑇𝑊) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  cin 3904  wss 3905  (class class class)co 7353  t crest 17342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-rest 17344
This theorem is referenced by:  restcnrm  23265  fiuncmp  23307  subislly  23384  restnlly  23385  islly2  23387  llyrest  23388  nllyrest  23389  llyidm  23391  nllyidm  23392  cldllycmp  23398  txkgen  23555  rerest  24708  xrrest  24712  cnmpopc  24838  cnheiborlem  24869  pcoass  24940  limcres  25803  perfdvf  25820  dvreslem  25826  dvres2lem  25827  dvaddbr  25856  dvmulbr  25857  dvmulbrOLD  25858  dvcnvrelem2  25939  psercn  26352  abelth  26367  cxpcn2  26672  cxpcn3  26674  lmlimxrge0  33914  pnfneige0  33917  cvmsss2  35246  cvmliftlem8  35264  cvmliftlem10  35266  cvmlift2lem9  35283  ivthALT  36308  limcresiooub  45624  limcresioolb  45625  cncfuni  45868  cncfiooicclem1  45875  itgsubsticclem  45957  dirkercncflem4  46088  fourierdlem32  46121  fourierdlem33  46122  fourierdlem62  46150  fouriersw  46213  smfco  46784
  Copyright terms: Public domain W3C validator