Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > restabs | Structured version Visualization version GIF version |
Description: Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.) |
Ref | Expression |
---|---|
restabs | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝐽 ∈ 𝑉) | |
2 | simp3 1136 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝑇 ∈ 𝑊) | |
3 | ssexg 5242 | . . . 4 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝑆 ∈ V) | |
4 | 3 | 3adant1 1128 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝑆 ∈ V) |
5 | restco 22223 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊 ∧ 𝑆 ∈ V) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t (𝑇 ∩ 𝑆))) | |
6 | 1, 2, 4, 5 | syl3anc 1369 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t (𝑇 ∩ 𝑆))) |
7 | simp2 1135 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝑆 ⊆ 𝑇) | |
8 | sseqin2 4146 | . . . 4 ⊢ (𝑆 ⊆ 𝑇 ↔ (𝑇 ∩ 𝑆) = 𝑆) | |
9 | 7, 8 | sylib 217 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → (𝑇 ∩ 𝑆) = 𝑆) |
10 | 9 | oveq2d 7271 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → (𝐽 ↾t (𝑇 ∩ 𝑆)) = (𝐽 ↾t 𝑆)) |
11 | 6, 10 | eqtrd 2778 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 (class class class)co 7255 ↾t crest 17048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-rest 17050 |
This theorem is referenced by: restcnrm 22421 fiuncmp 22463 subislly 22540 restnlly 22541 islly2 22543 llyrest 22544 nllyrest 22545 llyidm 22547 nllyidm 22548 cldllycmp 22554 txkgen 22711 rerest 23873 xrrest 23876 cnmpopc 23997 cnheiborlem 24023 pcoass 24093 limcres 24955 perfdvf 24972 dvreslem 24978 dvres2lem 24979 dvaddbr 25007 dvmulbr 25008 dvcnvrelem2 25087 psercn 25490 abelth 25505 cxpcn2 25804 cxpcn3 25806 lmlimxrge0 31800 pnfneige0 31803 cvmsss2 33136 cvmliftlem8 33154 cvmliftlem10 33156 cvmlift2lem9 33173 ivthALT 34451 limcresiooub 43073 limcresioolb 43074 cncfuni 43317 cncfiooicclem1 43324 itgsubsticclem 43406 dirkercncflem4 43537 fourierdlem32 43570 fourierdlem33 43571 fourierdlem62 43599 fouriersw 43662 smfco 44223 |
Copyright terms: Public domain | W3C validator |