| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restabs | Structured version Visualization version GIF version | ||
| Description: Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.) |
| Ref | Expression |
|---|---|
| restabs | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝐽 ∈ 𝑉) | |
| 2 | simp3 1138 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝑇 ∈ 𝑊) | |
| 3 | ssexg 5281 | . . . 4 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝑆 ∈ V) | |
| 4 | 3 | 3adant1 1130 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝑆 ∈ V) |
| 5 | restco 23058 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊 ∧ 𝑆 ∈ V) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t (𝑇 ∩ 𝑆))) | |
| 6 | 1, 2, 4, 5 | syl3anc 1373 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t (𝑇 ∩ 𝑆))) |
| 7 | simp2 1137 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝑆 ⊆ 𝑇) | |
| 8 | sseqin2 4189 | . . . 4 ⊢ (𝑆 ⊆ 𝑇 ↔ (𝑇 ∩ 𝑆) = 𝑆) | |
| 9 | 7, 8 | sylib 218 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → (𝑇 ∩ 𝑆) = 𝑆) |
| 10 | 9 | oveq2d 7406 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → (𝐽 ↾t (𝑇 ∩ 𝑆)) = (𝐽 ↾t 𝑆)) |
| 11 | 6, 10 | eqtrd 2765 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 (class class class)co 7390 ↾t crest 17390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-rest 17392 |
| This theorem is referenced by: restcnrm 23256 fiuncmp 23298 subislly 23375 restnlly 23376 islly2 23378 llyrest 23379 nllyrest 23380 llyidm 23382 nllyidm 23383 cldllycmp 23389 txkgen 23546 rerest 24699 xrrest 24703 cnmpopc 24829 cnheiborlem 24860 pcoass 24931 limcres 25794 perfdvf 25811 dvreslem 25817 dvres2lem 25818 dvaddbr 25847 dvmulbr 25848 dvmulbrOLD 25849 dvcnvrelem2 25930 psercn 26343 abelth 26358 cxpcn2 26663 cxpcn3 26665 lmlimxrge0 33945 pnfneige0 33948 cvmsss2 35268 cvmliftlem8 35286 cvmliftlem10 35288 cvmlift2lem9 35305 ivthALT 36330 limcresiooub 45647 limcresioolb 45648 cncfuni 45891 cncfiooicclem1 45898 itgsubsticclem 45980 dirkercncflem4 46111 fourierdlem32 46144 fourierdlem33 46145 fourierdlem62 46173 fouriersw 46236 smfco 46807 |
| Copyright terms: Public domain | W3C validator |