MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restabs Structured version   Visualization version   GIF version

Theorem restabs 22889
Description: Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restabs ((𝐽𝑉𝑆𝑇𝑇𝑊) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t 𝑆))

Proof of Theorem restabs
StepHypRef Expression
1 simp1 1134 . . 3 ((𝐽𝑉𝑆𝑇𝑇𝑊) → 𝐽𝑉)
2 simp3 1136 . . 3 ((𝐽𝑉𝑆𝑇𝑇𝑊) → 𝑇𝑊)
3 ssexg 5322 . . . 4 ((𝑆𝑇𝑇𝑊) → 𝑆 ∈ V)
433adant1 1128 . . 3 ((𝐽𝑉𝑆𝑇𝑇𝑊) → 𝑆 ∈ V)
5 restco 22888 . . 3 ((𝐽𝑉𝑇𝑊𝑆 ∈ V) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t (𝑇𝑆)))
61, 2, 4, 5syl3anc 1369 . 2 ((𝐽𝑉𝑆𝑇𝑇𝑊) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t (𝑇𝑆)))
7 simp2 1135 . . . 4 ((𝐽𝑉𝑆𝑇𝑇𝑊) → 𝑆𝑇)
8 sseqin2 4214 . . . 4 (𝑆𝑇 ↔ (𝑇𝑆) = 𝑆)
97, 8sylib 217 . . 3 ((𝐽𝑉𝑆𝑇𝑇𝑊) → (𝑇𝑆) = 𝑆)
109oveq2d 7427 . 2 ((𝐽𝑉𝑆𝑇𝑇𝑊) → (𝐽t (𝑇𝑆)) = (𝐽t 𝑆))
116, 10eqtrd 2770 1 ((𝐽𝑉𝑆𝑇𝑇𝑊) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2104  Vcvv 3472  cin 3946  wss 3947  (class class class)co 7411  t crest 17370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-rest 17372
This theorem is referenced by:  restcnrm  23086  fiuncmp  23128  subislly  23205  restnlly  23206  islly2  23208  llyrest  23209  nllyrest  23210  llyidm  23212  nllyidm  23213  cldllycmp  23219  txkgen  23376  rerest  24540  xrrest  24543  cnmpopc  24669  cnheiborlem  24700  pcoass  24771  limcres  25635  perfdvf  25652  dvreslem  25658  dvres2lem  25659  dvaddbr  25688  dvmulbr  25689  dvmulbrOLD  25690  dvcnvrelem2  25770  psercn  26174  abelth  26189  cxpcn2  26490  cxpcn3  26492  lmlimxrge0  33226  pnfneige0  33229  cvmsss2  34563  cvmliftlem8  34581  cvmliftlem10  34583  cvmlift2lem9  34600  ivthALT  35523  limcresiooub  44656  limcresioolb  44657  cncfuni  44900  cncfiooicclem1  44907  itgsubsticclem  44989  dirkercncflem4  45120  fourierdlem32  45153  fourierdlem33  45154  fourierdlem62  45182  fouriersw  45245  smfco  45816
  Copyright terms: Public domain W3C validator