![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restabs | Structured version Visualization version GIF version |
Description: Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.) |
Ref | Expression |
---|---|
restabs | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝐽 ∈ 𝑉) | |
2 | simp3 1137 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝑇 ∈ 𝑊) | |
3 | ssexg 5328 | . . . 4 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝑆 ∈ V) | |
4 | 3 | 3adant1 1129 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝑆 ∈ V) |
5 | restco 23187 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊 ∧ 𝑆 ∈ V) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t (𝑇 ∩ 𝑆))) | |
6 | 1, 2, 4, 5 | syl3anc 1370 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t (𝑇 ∩ 𝑆))) |
7 | simp2 1136 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝑆 ⊆ 𝑇) | |
8 | sseqin2 4230 | . . . 4 ⊢ (𝑆 ⊆ 𝑇 ↔ (𝑇 ∩ 𝑆) = 𝑆) | |
9 | 7, 8 | sylib 218 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → (𝑇 ∩ 𝑆) = 𝑆) |
10 | 9 | oveq2d 7446 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → (𝐽 ↾t (𝑇 ∩ 𝑆)) = (𝐽 ↾t 𝑆)) |
11 | 6, 10 | eqtrd 2774 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ∩ cin 3961 ⊆ wss 3962 (class class class)co 7430 ↾t crest 17466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-rest 17468 |
This theorem is referenced by: restcnrm 23385 fiuncmp 23427 subislly 23504 restnlly 23505 islly2 23507 llyrest 23508 nllyrest 23509 llyidm 23511 nllyidm 23512 cldllycmp 23518 txkgen 23675 rerest 24839 xrrest 24842 cnmpopc 24968 cnheiborlem 24999 pcoass 25070 limcres 25935 perfdvf 25952 dvreslem 25958 dvres2lem 25959 dvaddbr 25988 dvmulbr 25989 dvmulbrOLD 25990 dvcnvrelem2 26071 psercn 26484 abelth 26499 cxpcn2 26803 cxpcn3 26805 lmlimxrge0 33908 pnfneige0 33911 cvmsss2 35258 cvmliftlem8 35276 cvmliftlem10 35278 cvmlift2lem9 35295 ivthALT 36317 limcresiooub 45597 limcresioolb 45598 cncfuni 45841 cncfiooicclem1 45848 itgsubsticclem 45930 dirkercncflem4 46061 fourierdlem32 46094 fourierdlem33 46095 fourierdlem62 46123 fouriersw 46186 smfco 46757 |
Copyright terms: Public domain | W3C validator |