| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restabs | Structured version Visualization version GIF version | ||
| Description: Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.) |
| Ref | Expression |
|---|---|
| restabs | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝐽 ∈ 𝑉) | |
| 2 | simp3 1138 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝑇 ∈ 𝑊) | |
| 3 | ssexg 5259 | . . . 4 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝑆 ∈ V) | |
| 4 | 3 | 3adant1 1130 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝑆 ∈ V) |
| 5 | restco 23072 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊 ∧ 𝑆 ∈ V) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t (𝑇 ∩ 𝑆))) | |
| 6 | 1, 2, 4, 5 | syl3anc 1373 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t (𝑇 ∩ 𝑆))) |
| 7 | simp2 1137 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → 𝑆 ⊆ 𝑇) | |
| 8 | sseqin2 4171 | . . . 4 ⊢ (𝑆 ⊆ 𝑇 ↔ (𝑇 ∩ 𝑆) = 𝑆) | |
| 9 | 7, 8 | sylib 218 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → (𝑇 ∩ 𝑆) = 𝑆) |
| 10 | 9 | oveq2d 7357 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → (𝐽 ↾t (𝑇 ∩ 𝑆)) = (𝐽 ↾t 𝑆)) |
| 11 | 6, 10 | eqtrd 2765 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ∩ cin 3899 ⊆ wss 3900 (class class class)co 7341 ↾t crest 17316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-rest 17318 |
| This theorem is referenced by: restcnrm 23270 fiuncmp 23312 subislly 23389 restnlly 23390 islly2 23392 llyrest 23393 nllyrest 23394 llyidm 23396 nllyidm 23397 cldllycmp 23403 txkgen 23560 rerest 24712 xrrest 24716 cnmpopc 24842 cnheiborlem 24873 pcoass 24944 limcres 25807 perfdvf 25824 dvreslem 25830 dvres2lem 25831 dvaddbr 25860 dvmulbr 25861 dvmulbrOLD 25862 dvcnvrelem2 25943 psercn 26356 abelth 26371 cxpcn2 26676 cxpcn3 26678 lmlimxrge0 33951 pnfneige0 33954 cvmsss2 35286 cvmliftlem8 35304 cvmliftlem10 35306 cvmlift2lem9 35323 ivthALT 36348 limcresiooub 45659 limcresioolb 45660 cncfuni 45903 cncfiooicclem1 45910 itgsubsticclem 45992 dirkercncflem4 46123 fourierdlem32 46156 fourierdlem33 46157 fourierdlem62 46185 fouriersw 46248 smfco 46819 |
| Copyright terms: Public domain | W3C validator |