MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restabs Structured version   Visualization version   GIF version

Theorem restabs 23052
Description: Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restabs ((𝐽𝑉𝑆𝑇𝑇𝑊) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t 𝑆))

Proof of Theorem restabs
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐽𝑉𝑆𝑇𝑇𝑊) → 𝐽𝑉)
2 simp3 1138 . . 3 ((𝐽𝑉𝑆𝑇𝑇𝑊) → 𝑇𝑊)
3 ssexg 5278 . . . 4 ((𝑆𝑇𝑇𝑊) → 𝑆 ∈ V)
433adant1 1130 . . 3 ((𝐽𝑉𝑆𝑇𝑇𝑊) → 𝑆 ∈ V)
5 restco 23051 . . 3 ((𝐽𝑉𝑇𝑊𝑆 ∈ V) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t (𝑇𝑆)))
61, 2, 4, 5syl3anc 1373 . 2 ((𝐽𝑉𝑆𝑇𝑇𝑊) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t (𝑇𝑆)))
7 simp2 1137 . . . 4 ((𝐽𝑉𝑆𝑇𝑇𝑊) → 𝑆𝑇)
8 sseqin2 4186 . . . 4 (𝑆𝑇 ↔ (𝑇𝑆) = 𝑆)
97, 8sylib 218 . . 3 ((𝐽𝑉𝑆𝑇𝑇𝑊) → (𝑇𝑆) = 𝑆)
109oveq2d 7403 . 2 ((𝐽𝑉𝑆𝑇𝑇𝑊) → (𝐽t (𝑇𝑆)) = (𝐽t 𝑆))
116, 10eqtrd 2764 1 ((𝐽𝑉𝑆𝑇𝑇𝑊) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  wss 3914  (class class class)co 7387  t crest 17383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-rest 17385
This theorem is referenced by:  restcnrm  23249  fiuncmp  23291  subislly  23368  restnlly  23369  islly2  23371  llyrest  23372  nllyrest  23373  llyidm  23375  nllyidm  23376  cldllycmp  23382  txkgen  23539  rerest  24692  xrrest  24696  cnmpopc  24822  cnheiborlem  24853  pcoass  24924  limcres  25787  perfdvf  25804  dvreslem  25810  dvres2lem  25811  dvaddbr  25840  dvmulbr  25841  dvmulbrOLD  25842  dvcnvrelem2  25923  psercn  26336  abelth  26351  cxpcn2  26656  cxpcn3  26658  lmlimxrge0  33938  pnfneige0  33941  cvmsss2  35261  cvmliftlem8  35279  cvmliftlem10  35281  cvmlift2lem9  35298  ivthALT  36323  limcresiooub  45640  limcresioolb  45641  cncfuni  45884  cncfiooicclem1  45891  itgsubsticclem  45973  dirkercncflem4  46104  fourierdlem32  46137  fourierdlem33  46138  fourierdlem62  46166  fouriersw  46229  smfco  46800
  Copyright terms: Public domain W3C validator