MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restabs Structured version   Visualization version   GIF version

Theorem restabs 22423
Description: Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restabs ((𝐽𝑉𝑆𝑇𝑇𝑊) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t 𝑆))

Proof of Theorem restabs
StepHypRef Expression
1 simp1 1135 . . 3 ((𝐽𝑉𝑆𝑇𝑇𝑊) → 𝐽𝑉)
2 simp3 1137 . . 3 ((𝐽𝑉𝑆𝑇𝑇𝑊) → 𝑇𝑊)
3 ssexg 5268 . . . 4 ((𝑆𝑇𝑇𝑊) → 𝑆 ∈ V)
433adant1 1129 . . 3 ((𝐽𝑉𝑆𝑇𝑇𝑊) → 𝑆 ∈ V)
5 restco 22422 . . 3 ((𝐽𝑉𝑇𝑊𝑆 ∈ V) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t (𝑇𝑆)))
61, 2, 4, 5syl3anc 1370 . 2 ((𝐽𝑉𝑆𝑇𝑇𝑊) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t (𝑇𝑆)))
7 simp2 1136 . . . 4 ((𝐽𝑉𝑆𝑇𝑇𝑊) → 𝑆𝑇)
8 sseqin2 4163 . . . 4 (𝑆𝑇 ↔ (𝑇𝑆) = 𝑆)
97, 8sylib 217 . . 3 ((𝐽𝑉𝑆𝑇𝑇𝑊) → (𝑇𝑆) = 𝑆)
109oveq2d 7354 . 2 ((𝐽𝑉𝑆𝑇𝑇𝑊) → (𝐽t (𝑇𝑆)) = (𝐽t 𝑆))
116, 10eqtrd 2776 1 ((𝐽𝑉𝑆𝑇𝑇𝑊) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  Vcvv 3441  cin 3897  wss 3898  (class class class)co 7338  t crest 17229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pr 5373  ax-un 7651
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-ov 7341  df-oprab 7342  df-mpo 7343  df-rest 17231
This theorem is referenced by:  restcnrm  22620  fiuncmp  22662  subislly  22739  restnlly  22740  islly2  22742  llyrest  22743  nllyrest  22744  llyidm  22746  nllyidm  22747  cldllycmp  22753  txkgen  22910  rerest  24074  xrrest  24077  cnmpopc  24198  cnheiborlem  24224  pcoass  24294  limcres  25157  perfdvf  25174  dvreslem  25180  dvres2lem  25181  dvaddbr  25209  dvmulbr  25210  dvcnvrelem2  25289  psercn  25692  abelth  25707  cxpcn2  26006  cxpcn3  26008  lmlimxrge0  32196  pnfneige0  32199  cvmsss2  33535  cvmliftlem8  33553  cvmliftlem10  33555  cvmlift2lem9  33572  ivthALT  34663  limcresiooub  43571  limcresioolb  43572  cncfuni  43815  cncfiooicclem1  43822  itgsubsticclem  43904  dirkercncflem4  44035  fourierdlem32  44068  fourierdlem33  44069  fourierdlem62  44097  fouriersw  44160  smfco  44729
  Copyright terms: Public domain W3C validator