MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restabs Structured version   Visualization version   GIF version

Theorem restabs 23056
Description: Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restabs ((𝐽𝑉𝑆𝑇𝑇𝑊) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t 𝑆))

Proof of Theorem restabs
StepHypRef Expression
1 simp1 1134 . . 3 ((𝐽𝑉𝑆𝑇𝑇𝑊) → 𝐽𝑉)
2 simp3 1136 . . 3 ((𝐽𝑉𝑆𝑇𝑇𝑊) → 𝑇𝑊)
3 ssexg 5317 . . . 4 ((𝑆𝑇𝑇𝑊) → 𝑆 ∈ V)
433adant1 1128 . . 3 ((𝐽𝑉𝑆𝑇𝑇𝑊) → 𝑆 ∈ V)
5 restco 23055 . . 3 ((𝐽𝑉𝑇𝑊𝑆 ∈ V) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t (𝑇𝑆)))
61, 2, 4, 5syl3anc 1369 . 2 ((𝐽𝑉𝑆𝑇𝑇𝑊) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t (𝑇𝑆)))
7 simp2 1135 . . . 4 ((𝐽𝑉𝑆𝑇𝑇𝑊) → 𝑆𝑇)
8 sseqin2 4211 . . . 4 (𝑆𝑇 ↔ (𝑇𝑆) = 𝑆)
97, 8sylib 217 . . 3 ((𝐽𝑉𝑆𝑇𝑇𝑊) → (𝑇𝑆) = 𝑆)
109oveq2d 7430 . 2 ((𝐽𝑉𝑆𝑇𝑇𝑊) → (𝐽t (𝑇𝑆)) = (𝐽t 𝑆))
116, 10eqtrd 2767 1 ((𝐽𝑉𝑆𝑇𝑇𝑊) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1534  wcel 2099  Vcvv 3469  cin 3943  wss 3944  (class class class)co 7414  t crest 17393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-rest 17395
This theorem is referenced by:  restcnrm  23253  fiuncmp  23295  subislly  23372  restnlly  23373  islly2  23375  llyrest  23376  nllyrest  23377  llyidm  23379  nllyidm  23380  cldllycmp  23386  txkgen  23543  rerest  24707  xrrest  24710  cnmpopc  24836  cnheiborlem  24867  pcoass  24938  limcres  25802  perfdvf  25819  dvreslem  25825  dvres2lem  25826  dvaddbr  25855  dvmulbr  25856  dvmulbrOLD  25857  dvcnvrelem2  25938  psercn  26350  abelth  26365  cxpcn2  26668  cxpcn3  26670  lmlimxrge0  33485  pnfneige0  33488  cvmsss2  34820  cvmliftlem8  34838  cvmliftlem10  34840  cvmlift2lem9  34857  ivthALT  35755  limcresiooub  44953  limcresioolb  44954  cncfuni  45197  cncfiooicclem1  45204  itgsubsticclem  45286  dirkercncflem4  45417  fourierdlem32  45450  fourierdlem33  45451  fourierdlem62  45479  fouriersw  45542  smfco  46113
  Copyright terms: Public domain W3C validator