![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > stoig | Structured version Visualization version GIF version |
Description: The topological space built with a subspace topology. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.) |
Ref | Expression |
---|---|
restuni.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
stoig | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), (𝐽 ↾t 𝐴)⟩} ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restuni.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | toptopon 22639 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
3 | resttopon 22885 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
4 | 2, 3 | sylanb 581 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
5 | eqid 2732 | . . 3 ⊢ {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), (𝐽 ↾t 𝐴)⟩} = {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), (𝐽 ↾t 𝐴)⟩} | |
6 | 5 | eltpsg 22665 | . 2 ⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) → {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), (𝐽 ↾t 𝐴)⟩} ∈ TopSp) |
7 | 4, 6 | syl 17 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), (𝐽 ↾t 𝐴)⟩} ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 {cpr 4630 ⟨cop 4634 ∪ cuni 4908 ‘cfv 6543 (class class class)co 7411 ndxcnx 17130 Basecbs 17148 TopSetcts 17207 ↾t crest 17370 Topctop 22615 TopOnctopon 22632 TopSpctps 22654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fi 9408 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-struct 17084 df-slot 17119 df-ndx 17131 df-base 17149 df-tset 17220 df-rest 17372 df-topn 17373 df-topgen 17393 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |