MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcn2 Structured version   Visualization version   GIF version

Theorem rlimcn2 14935
Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 17-Sep-2014.)
Hypotheses
Ref Expression
rlimcn2.1a ((𝜑𝑧𝐴) → 𝐵𝑋)
rlimcn2.1b ((𝜑𝑧𝐴) → 𝐶𝑌)
rlimcn2.2a (𝜑𝑅𝑋)
rlimcn2.2b (𝜑𝑆𝑌)
rlimcn2.3a (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝑅)
rlimcn2.3b (𝜑 → (𝑧𝐴𝐶) ⇝𝑟 𝑆)
rlimcn2.4 (𝜑𝐹:(𝑋 × 𝑌)⟶ℂ)
rlimcn2.5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥))
Assertion
Ref Expression
rlimcn2 (𝜑 → (𝑧𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆))
Distinct variable groups:   𝑠,𝑟,𝑥,𝑧,𝐴   𝑢,𝑟,𝑣,𝐹,𝑠,𝑥,𝑧   𝑅,𝑟,𝑠,𝑢,𝑣,𝑥,𝑧   𝐵,𝑟,𝑠,𝑢,𝑣,𝑥   𝜑,𝑟,𝑠,𝑥,𝑧   𝑆,𝑟,𝑠,𝑢,𝑣,𝑥,𝑧   𝐶,𝑟,𝑠,𝑣,𝑥   𝑢,𝑋,𝑧   𝑢,𝑌,𝑣,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝐴(𝑣,𝑢)   𝐵(𝑧)   𝐶(𝑧,𝑢)   𝑋(𝑥,𝑣,𝑠,𝑟)   𝑌(𝑥,𝑠,𝑟)

Proof of Theorem rlimcn2
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcn2.5 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥))
2 rlimcn2.1a . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝐵𝑋)
32ralrimiva 3179 . . . . . . . . 9 (𝜑 → ∀𝑧𝐴 𝐵𝑋)
43adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ∀𝑧𝐴 𝐵𝑋)
5 simprl 767 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → 𝑟 ∈ ℝ+)
6 rlimcn2.3a . . . . . . . . 9 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝑅)
76adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → (𝑧𝐴𝐵) ⇝𝑟 𝑅)
84, 5, 7rlimi 14858 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ∃𝑎 ∈ ℝ ∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟))
9 rlimcn2.1b . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝐶𝑌)
109ralrimiva 3179 . . . . . . . . 9 (𝜑 → ∀𝑧𝐴 𝐶𝑌)
1110adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ∀𝑧𝐴 𝐶𝑌)
12 simprr 769 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → 𝑠 ∈ ℝ+)
13 rlimcn2.3b . . . . . . . . 9 (𝜑 → (𝑧𝐴𝐶) ⇝𝑟 𝑆)
1413adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → (𝑧𝐴𝐶) ⇝𝑟 𝑆)
1511, 12, 14rlimi 14858 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ∃𝑏 ∈ ℝ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠))
16 reeanv 3365 . . . . . . . 8 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) ↔ (∃𝑎 ∈ ℝ ∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∃𝑏 ∈ ℝ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)))
17 r19.26 3167 . . . . . . . . . 10 (∀𝑧𝐴 ((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) ↔ (∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)))
18 anim12 805 . . . . . . . . . . . . 13 (((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → ((𝑎𝑧𝑏𝑧) → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)))
19 simplrl 773 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → 𝑎 ∈ ℝ)
20 simplrr 774 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → 𝑏 ∈ ℝ)
21 eqid 2818 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐴𝐵) = (𝑧𝐴𝐵)
2221, 2dmmptd 6486 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom (𝑧𝐴𝐵) = 𝐴)
23 rlimss 14847 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝐴𝐵) ⇝𝑟 𝑅 → dom (𝑧𝐴𝐵) ⊆ ℝ)
246, 23syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom (𝑧𝐴𝐵) ⊆ ℝ)
2522, 24eqsstrrd 4003 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ ℝ)
2625ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → 𝐴 ⊆ ℝ)
2726sselda 3964 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
28 maxle 12572 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 ↔ (𝑎𝑧𝑏𝑧)))
2919, 20, 27, 28syl3anc 1363 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 ↔ (𝑎𝑧𝑏𝑧)))
3029imbi1d 343 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → ((if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) ↔ ((𝑎𝑧𝑏𝑧) → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠))))
3118, 30syl5ibr 247 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → (((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠))))
3231ralimdva 3174 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∀𝑧𝐴 ((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → ∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠))))
33 ifcl 4507 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℝ ∧ 𝑎 ∈ ℝ) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
3433ancoms 459 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
3534ad2antlr 723 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
362adantlr 711 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) → 𝐵𝑋)
379adantlr 711 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) → 𝐶𝑌)
3836, 37jca 512 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) → (𝐵𝑋𝐶𝑌))
39 fvoveq1 7168 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝐵 → (abs‘(𝑢𝑅)) = (abs‘(𝐵𝑅)))
4039breq1d 5067 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝐵 → ((abs‘(𝑢𝑅)) < 𝑟 ↔ (abs‘(𝐵𝑅)) < 𝑟))
4140anbi1d 629 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝐵 → (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) ↔ ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠)))
42 oveq1 7152 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝐵 → (𝑢𝐹𝑣) = (𝐵𝐹𝑣))
4342fvoveq1d 7167 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝐵 → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) = (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))))
4443breq1d 5067 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝐵 → ((abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥 ↔ (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥))
4541, 44imbi12d 346 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝐵 → ((((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) ↔ (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)))
46 fvoveq1 7168 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = 𝐶 → (abs‘(𝑣𝑆)) = (abs‘(𝐶𝑆)))
4746breq1d 5067 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 𝐶 → ((abs‘(𝑣𝑆)) < 𝑠 ↔ (abs‘(𝐶𝑆)) < 𝑠))
4847anbi2d 628 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝐶 → (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) ↔ ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)))
49 oveq2 7153 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = 𝐶 → (𝐵𝐹𝑣) = (𝐵𝐹𝐶))
5049fvoveq1d 7167 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 𝐶 → (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) = (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))))
5150breq1d 5067 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝐶 → ((abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥 ↔ (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
5248, 51imbi12d 346 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝐶 → ((((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) ↔ (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
5345, 52rspc2va 3631 . . . . . . . . . . . . . . . . . . 19 (((𝐵𝑋𝐶𝑌) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
5438, 53sylan 580 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
5554imim2d 57 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → ((if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
5655an32s 648 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) ∧ 𝑧𝐴) → ((if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
5756ralimdva 3174 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → ∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
5857adantlr 711 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → ∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
59 breq1 5060 . . . . . . . . . . . . . . 15 (𝑐 = if(𝑎𝑏, 𝑏, 𝑎) → (𝑐𝑧 ↔ if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧))
6059rspceaimv 3625 . . . . . . . . . . . . . 14 ((if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ ∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
6135, 58, 60syl6an 680 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
6261ex 413 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6362com23 86 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6432, 63syld 47 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∀𝑧𝐴 ((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6517, 64syl5bir 244 . . . . . . . . 9 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → ((∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6665rexlimdvva 3291 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6716, 66syl5bir 244 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ((∃𝑎 ∈ ℝ ∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∃𝑏 ∈ ℝ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
688, 15, 67mp2and 695 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
6968rexlimdvva 3291 . . . . 5 (𝜑 → (∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
7069imp 407 . . . 4 ((𝜑 ∧ ∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
711, 70syldan 591 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
7271ralrimiva 3179 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
73 rlimcn2.4 . . . . . 6 (𝜑𝐹:(𝑋 × 𝑌)⟶ℂ)
7473adantr 481 . . . . 5 ((𝜑𝑧𝐴) → 𝐹:(𝑋 × 𝑌)⟶ℂ)
7574, 2, 9fovrnd 7309 . . . 4 ((𝜑𝑧𝐴) → (𝐵𝐹𝐶) ∈ ℂ)
7675ralrimiva 3179 . . 3 (𝜑 → ∀𝑧𝐴 (𝐵𝐹𝐶) ∈ ℂ)
77 rlimcn2.2a . . . 4 (𝜑𝑅𝑋)
78 rlimcn2.2b . . . 4 (𝜑𝑆𝑌)
7973, 77, 78fovrnd 7309 . . 3 (𝜑 → (𝑅𝐹𝑆) ∈ ℂ)
8076, 25, 79rlim2 14841 . 2 (𝜑 → ((𝑧𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆) ↔ ∀𝑥 ∈ ℝ+𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
8172, 80mpbird 258 1 (𝜑 → (𝑧𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  wrex 3136  wss 3933  ifcif 4463   class class class wbr 5057  cmpt 5137   × cxp 5546  dom cdm 5548  wf 6344  cfv 6348  (class class class)co 7145  cc 10523  cr 10524   < clt 10663  cle 10664  cmin 10858  +crp 12377  abscabs 14581  𝑟 crli 14830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-pre-lttri 10599  ax-pre-lttrn 10600
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-rlim 14834
This theorem is referenced by:  rlimadd  14987  rlimsub  14988  rlimmul  14989
  Copyright terms: Public domain W3C validator