![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimcn2 | Structured version Visualization version GIF version |
Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 17-Sep-2014.) |
Ref | Expression |
---|---|
rlimcn2.1a | β’ ((π β§ π§ β π΄) β π΅ β π) |
rlimcn2.1b | β’ ((π β§ π§ β π΄) β πΆ β π) |
rlimcn2.2a | β’ (π β π β π) |
rlimcn2.2b | β’ (π β π β π) |
rlimcn2.3a | β’ (π β (π§ β π΄ β¦ π΅) βπ π ) |
rlimcn2.3b | β’ (π β (π§ β π΄ β¦ πΆ) βπ π) |
rlimcn2.4 | β’ (π β πΉ:(π Γ π)βΆβ) |
rlimcn2.5 | β’ ((π β§ π₯ β β+) β βπ β β+ βπ β β+ βπ’ β π βπ£ β π (((absβ(π’ β π )) < π β§ (absβ(π£ β π)) < π ) β (absβ((π’πΉπ£) β (π πΉπ))) < π₯)) |
Ref | Expression |
---|---|
rlimcn2 | β’ (π β (π§ β π΄ β¦ (π΅πΉπΆ)) βπ (π πΉπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimcn2.1a | . 2 β’ ((π β§ π§ β π΄) β π΅ β π) | |
2 | rlimcn2.1b | . 2 β’ ((π β§ π§ β π΄) β πΆ β π) | |
3 | rlimcn2.4 | . . . 4 β’ (π β πΉ:(π Γ π)βΆβ) | |
4 | 3 | adantr 480 | . . 3 β’ ((π β§ π§ β π΄) β πΉ:(π Γ π)βΆβ) |
5 | 4, 1, 2 | fovcdmd 7575 | . 2 β’ ((π β§ π§ β π΄) β (π΅πΉπΆ) β β) |
6 | rlimcn2.2a | . . 3 β’ (π β π β π) | |
7 | rlimcn2.2b | . . 3 β’ (π β π β π) | |
8 | 3, 6, 7 | fovcdmd 7575 | . 2 β’ (π β (π πΉπ) β β) |
9 | rlimcn2.3a | . 2 β’ (π β (π§ β π΄ β¦ π΅) βπ π ) | |
10 | rlimcn2.3b | . 2 β’ (π β (π§ β π΄ β¦ πΆ) βπ π) | |
11 | rlimcn2.5 | . 2 β’ ((π β§ π₯ β β+) β βπ β β+ βπ β β+ βπ’ β π βπ£ β π (((absβ(π’ β π )) < π β§ (absβ(π£ β π)) < π ) β (absβ((π’πΉπ£) β (π πΉπ))) < π₯)) | |
12 | 1, 2, 5, 8, 9, 10, 11 | rlimcn3 15538 | 1 β’ (π β (π§ β π΄ β¦ (π΅πΉπΆ)) βπ (π πΉπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β wcel 2098 βwral 3055 βwrex 3064 class class class wbr 5141 β¦ cmpt 5224 Γ cxp 5667 βΆwf 6532 βcfv 6536 (class class class)co 7404 βcc 11107 < clt 11249 β cmin 11445 β+crp 12977 abscabs 15185 βπ crli 15433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-pre-lttri 11183 ax-pre-lttrn 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-er 8702 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-rlim 15437 |
This theorem is referenced by: rlimaddOLD 15592 rlimsub 15593 rlimmulOLD 15595 |
Copyright terms: Public domain | W3C validator |