| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimcn2 | Structured version Visualization version GIF version | ||
| Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 17-Sep-2014.) |
| Ref | Expression |
|---|---|
| rlimcn2.1a | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐵 ∈ 𝑋) |
| rlimcn2.1b | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐶 ∈ 𝑌) |
| rlimcn2.2a | ⊢ (𝜑 → 𝑅 ∈ 𝑋) |
| rlimcn2.2b | ⊢ (𝜑 → 𝑆 ∈ 𝑌) |
| rlimcn2.3a | ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝑅) |
| rlimcn2.3b | ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝑆) |
| rlimcn2.4 | ⊢ (𝜑 → 𝐹:(𝑋 × 𝑌)⟶ℂ) |
| rlimcn2.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((abs‘(𝑢 − 𝑅)) < 𝑟 ∧ (abs‘(𝑣 − 𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) |
| Ref | Expression |
|---|---|
| rlimcn2 | ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimcn2.1a | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐵 ∈ 𝑋) | |
| 2 | rlimcn2.1b | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐶 ∈ 𝑌) | |
| 3 | rlimcn2.4 | . . . 4 ⊢ (𝜑 → 𝐹:(𝑋 × 𝑌)⟶ℂ) | |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐹:(𝑋 × 𝑌)⟶ℂ) |
| 5 | 4, 1, 2 | fovcdmd 7561 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐵𝐹𝐶) ∈ ℂ) |
| 6 | rlimcn2.2a | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑋) | |
| 7 | rlimcn2.2b | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑌) | |
| 8 | 3, 6, 7 | fovcdmd 7561 | . 2 ⊢ (𝜑 → (𝑅𝐹𝑆) ∈ ℂ) |
| 9 | rlimcn2.3a | . 2 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝑅) | |
| 10 | rlimcn2.3b | . 2 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝑆) | |
| 11 | rlimcn2.5 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((abs‘(𝑢 − 𝑅)) < 𝑟 ∧ (abs‘(𝑣 − 𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) | |
| 12 | 1, 2, 5, 8, 9, 10, 11 | rlimcn3 15556 | 1 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5107 ↦ cmpt 5188 × cxp 5636 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 < clt 11208 − cmin 11405 ℝ+crp 12951 abscabs 15200 ⇝𝑟 crli 15451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-rlim 15455 |
| This theorem is referenced by: rlimsub 15610 |
| Copyright terms: Public domain | W3C validator |