MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcn2 Structured version   Visualization version   GIF version

Theorem rlimcn2 15498
Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 17-Sep-2014.)
Hypotheses
Ref Expression
rlimcn2.1a ((𝜑𝑧𝐴) → 𝐵𝑋)
rlimcn2.1b ((𝜑𝑧𝐴) → 𝐶𝑌)
rlimcn2.2a (𝜑𝑅𝑋)
rlimcn2.2b (𝜑𝑆𝑌)
rlimcn2.3a (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝑅)
rlimcn2.3b (𝜑 → (𝑧𝐴𝐶) ⇝𝑟 𝑆)
rlimcn2.4 (𝜑𝐹:(𝑋 × 𝑌)⟶ℂ)
rlimcn2.5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥))
Assertion
Ref Expression
rlimcn2 (𝜑 → (𝑧𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆))
Distinct variable groups:   𝐴,𝑟,𝑠,𝑥,𝑧   𝐹,𝑟,𝑠,𝑢,𝑣,𝑥,𝑧   𝑅,𝑟,𝑠,𝑢,𝑣,𝑥,𝑧   𝐵,𝑟,𝑠,𝑢,𝑣,𝑥   𝜑,𝑟,𝑠,𝑥,𝑧   𝑆,𝑟,𝑠,𝑢,𝑣,𝑥,𝑧   𝐶,𝑟,𝑠,𝑣,𝑥   𝑢,𝑋,𝑧   𝑢,𝑌,𝑣,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝐴(𝑣,𝑢)   𝐵(𝑧)   𝐶(𝑧,𝑢)   𝑋(𝑥,𝑣,𝑠,𝑟)   𝑌(𝑥,𝑠,𝑟)

Proof of Theorem rlimcn2
StepHypRef Expression
1 rlimcn2.1a . 2 ((𝜑𝑧𝐴) → 𝐵𝑋)
2 rlimcn2.1b . 2 ((𝜑𝑧𝐴) → 𝐶𝑌)
3 rlimcn2.4 . . . 4 (𝜑𝐹:(𝑋 × 𝑌)⟶ℂ)
43adantr 480 . . 3 ((𝜑𝑧𝐴) → 𝐹:(𝑋 × 𝑌)⟶ℂ)
54, 1, 2fovcdmd 7518 . 2 ((𝜑𝑧𝐴) → (𝐵𝐹𝐶) ∈ ℂ)
6 rlimcn2.2a . . 3 (𝜑𝑅𝑋)
7 rlimcn2.2b . . 3 (𝜑𝑆𝑌)
83, 6, 7fovcdmd 7518 . 2 (𝜑 → (𝑅𝐹𝑆) ∈ ℂ)
9 rlimcn2.3a . 2 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝑅)
10 rlimcn2.3b . 2 (𝜑 → (𝑧𝐴𝐶) ⇝𝑟 𝑆)
11 rlimcn2.5 . 2 ((𝜑𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥))
121, 2, 5, 8, 9, 10, 11rlimcn3 15497 1 (𝜑 → (𝑧𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wral 3047  wrex 3056   class class class wbr 5089  cmpt 5170   × cxp 5612  wf 6477  cfv 6481  (class class class)co 7346  cc 11004   < clt 11146  cmin 11344  +crp 12890  abscabs 15141  𝑟 crli 15392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-rlim 15396
This theorem is referenced by:  rlimsub  15551
  Copyright terms: Public domain W3C validator