| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimcn2 | Structured version Visualization version GIF version | ||
| Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 17-Sep-2014.) |
| Ref | Expression |
|---|---|
| rlimcn2.1a | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐵 ∈ 𝑋) |
| rlimcn2.1b | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐶 ∈ 𝑌) |
| rlimcn2.2a | ⊢ (𝜑 → 𝑅 ∈ 𝑋) |
| rlimcn2.2b | ⊢ (𝜑 → 𝑆 ∈ 𝑌) |
| rlimcn2.3a | ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝑅) |
| rlimcn2.3b | ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝑆) |
| rlimcn2.4 | ⊢ (𝜑 → 𝐹:(𝑋 × 𝑌)⟶ℂ) |
| rlimcn2.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((abs‘(𝑢 − 𝑅)) < 𝑟 ∧ (abs‘(𝑣 − 𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) |
| Ref | Expression |
|---|---|
| rlimcn2 | ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimcn2.1a | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐵 ∈ 𝑋) | |
| 2 | rlimcn2.1b | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐶 ∈ 𝑌) | |
| 3 | rlimcn2.4 | . . . 4 ⊢ (𝜑 → 𝐹:(𝑋 × 𝑌)⟶ℂ) | |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐹:(𝑋 × 𝑌)⟶ℂ) |
| 5 | 4, 1, 2 | fovcdmd 7564 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐵𝐹𝐶) ∈ ℂ) |
| 6 | rlimcn2.2a | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑋) | |
| 7 | rlimcn2.2b | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑌) | |
| 8 | 3, 6, 7 | fovcdmd 7564 | . 2 ⊢ (𝜑 → (𝑅𝐹𝑆) ∈ ℂ) |
| 9 | rlimcn2.3a | . 2 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝑅) | |
| 10 | rlimcn2.3b | . 2 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝑆) | |
| 11 | rlimcn2.5 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((abs‘(𝑢 − 𝑅)) < 𝑟 ∧ (abs‘(𝑣 − 𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) | |
| 12 | 1, 2, 5, 8, 9, 10, 11 | rlimcn3 15563 | 1 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 class class class wbr 5110 ↦ cmpt 5191 × cxp 5639 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 < clt 11215 − cmin 11412 ℝ+crp 12958 abscabs 15207 ⇝𝑟 crli 15458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-rlim 15462 |
| This theorem is referenced by: rlimsub 15617 |
| Copyright terms: Public domain | W3C validator |