MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcn2 Structured version   Visualization version   GIF version

Theorem rlimcn2 15627
Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 17-Sep-2014.)
Hypotheses
Ref Expression
rlimcn2.1a ((𝜑𝑧𝐴) → 𝐵𝑋)
rlimcn2.1b ((𝜑𝑧𝐴) → 𝐶𝑌)
rlimcn2.2a (𝜑𝑅𝑋)
rlimcn2.2b (𝜑𝑆𝑌)
rlimcn2.3a (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝑅)
rlimcn2.3b (𝜑 → (𝑧𝐴𝐶) ⇝𝑟 𝑆)
rlimcn2.4 (𝜑𝐹:(𝑋 × 𝑌)⟶ℂ)
rlimcn2.5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥))
Assertion
Ref Expression
rlimcn2 (𝜑 → (𝑧𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆))
Distinct variable groups:   𝐴,𝑟,𝑠,𝑥,𝑧   𝐹,𝑟,𝑠,𝑢,𝑣,𝑥,𝑧   𝑅,𝑟,𝑠,𝑢,𝑣,𝑥,𝑧   𝐵,𝑟,𝑠,𝑢,𝑣,𝑥   𝜑,𝑟,𝑠,𝑥,𝑧   𝑆,𝑟,𝑠,𝑢,𝑣,𝑥,𝑧   𝐶,𝑟,𝑠,𝑣,𝑥   𝑢,𝑋,𝑧   𝑢,𝑌,𝑣,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝐴(𝑣,𝑢)   𝐵(𝑧)   𝐶(𝑧,𝑢)   𝑋(𝑥,𝑣,𝑠,𝑟)   𝑌(𝑥,𝑠,𝑟)

Proof of Theorem rlimcn2
StepHypRef Expression
1 rlimcn2.1a . 2 ((𝜑𝑧𝐴) → 𝐵𝑋)
2 rlimcn2.1b . 2 ((𝜑𝑧𝐴) → 𝐶𝑌)
3 rlimcn2.4 . . . 4 (𝜑𝐹:(𝑋 × 𝑌)⟶ℂ)
43adantr 480 . . 3 ((𝜑𝑧𝐴) → 𝐹:(𝑋 × 𝑌)⟶ℂ)
54, 1, 2fovcdmd 7605 . 2 ((𝜑𝑧𝐴) → (𝐵𝐹𝐶) ∈ ℂ)
6 rlimcn2.2a . . 3 (𝜑𝑅𝑋)
7 rlimcn2.2b . . 3 (𝜑𝑆𝑌)
83, 6, 7fovcdmd 7605 . 2 (𝜑 → (𝑅𝐹𝑆) ∈ ℂ)
9 rlimcn2.3a . 2 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝑅)
10 rlimcn2.3b . 2 (𝜑 → (𝑧𝐴𝐶) ⇝𝑟 𝑆)
11 rlimcn2.5 . 2 ((𝜑𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥))
121, 2, 5, 8, 9, 10, 11rlimcn3 15626 1 (𝜑 → (𝑧𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3061  wrex 3070   class class class wbr 5143  cmpt 5225   × cxp 5683  wf 6557  cfv 6561  (class class class)co 7431  cc 11153   < clt 11295  cmin 11492  +crp 13034  abscabs 15273  𝑟 crli 15521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-rlim 15525
This theorem is referenced by:  rlimsub  15680
  Copyright terms: Public domain W3C validator