MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcn2 Structured version   Visualization version   GIF version

Theorem rlimcn2 15612
Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 17-Sep-2014.)
Hypotheses
Ref Expression
rlimcn2.1a ((𝜑𝑧𝐴) → 𝐵𝑋)
rlimcn2.1b ((𝜑𝑧𝐴) → 𝐶𝑌)
rlimcn2.2a (𝜑𝑅𝑋)
rlimcn2.2b (𝜑𝑆𝑌)
rlimcn2.3a (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝑅)
rlimcn2.3b (𝜑 → (𝑧𝐴𝐶) ⇝𝑟 𝑆)
rlimcn2.4 (𝜑𝐹:(𝑋 × 𝑌)⟶ℂ)
rlimcn2.5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥))
Assertion
Ref Expression
rlimcn2 (𝜑 → (𝑧𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆))
Distinct variable groups:   𝐴,𝑟,𝑠,𝑥,𝑧   𝐹,𝑟,𝑠,𝑢,𝑣,𝑥,𝑧   𝑅,𝑟,𝑠,𝑢,𝑣,𝑥,𝑧   𝐵,𝑟,𝑠,𝑢,𝑣,𝑥   𝜑,𝑟,𝑠,𝑥,𝑧   𝑆,𝑟,𝑠,𝑢,𝑣,𝑥,𝑧   𝐶,𝑟,𝑠,𝑣,𝑥   𝑢,𝑋,𝑧   𝑢,𝑌,𝑣,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝐴(𝑣,𝑢)   𝐵(𝑧)   𝐶(𝑧,𝑢)   𝑋(𝑥,𝑣,𝑠,𝑟)   𝑌(𝑥,𝑠,𝑟)

Proof of Theorem rlimcn2
StepHypRef Expression
1 rlimcn2.1a . 2 ((𝜑𝑧𝐴) → 𝐵𝑋)
2 rlimcn2.1b . 2 ((𝜑𝑧𝐴) → 𝐶𝑌)
3 rlimcn2.4 . . . 4 (𝜑𝐹:(𝑋 × 𝑌)⟶ℂ)
43adantr 480 . . 3 ((𝜑𝑧𝐴) → 𝐹:(𝑋 × 𝑌)⟶ℂ)
54, 1, 2fovcdmd 7584 . 2 ((𝜑𝑧𝐴) → (𝐵𝐹𝐶) ∈ ℂ)
6 rlimcn2.2a . . 3 (𝜑𝑅𝑋)
7 rlimcn2.2b . . 3 (𝜑𝑆𝑌)
83, 6, 7fovcdmd 7584 . 2 (𝜑 → (𝑅𝐹𝑆) ∈ ℂ)
9 rlimcn2.3a . 2 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝑅)
10 rlimcn2.3b . 2 (𝜑 → (𝑧𝐴𝐶) ⇝𝑟 𝑆)
11 rlimcn2.5 . 2 ((𝜑𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥))
121, 2, 5, 8, 9, 10, 11rlimcn3 15611 1 (𝜑 → (𝑧𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3052  wrex 3061   class class class wbr 5124  cmpt 5206   × cxp 5657  wf 6532  cfv 6536  (class class class)co 7410  cc 11132   < clt 11274  cmin 11471  +crp 13013  abscabs 15258  𝑟 crli 15506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-pre-lttri 11208  ax-pre-lttrn 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-rlim 15510
This theorem is referenced by:  rlimsub  15665
  Copyright terms: Public domain W3C validator