![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimcn2 | Structured version Visualization version GIF version |
Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 17-Sep-2014.) |
Ref | Expression |
---|---|
rlimcn2.1a | β’ ((π β§ π§ β π΄) β π΅ β π) |
rlimcn2.1b | β’ ((π β§ π§ β π΄) β πΆ β π) |
rlimcn2.2a | β’ (π β π β π) |
rlimcn2.2b | β’ (π β π β π) |
rlimcn2.3a | β’ (π β (π§ β π΄ β¦ π΅) βπ π ) |
rlimcn2.3b | β’ (π β (π§ β π΄ β¦ πΆ) βπ π) |
rlimcn2.4 | β’ (π β πΉ:(π Γ π)βΆβ) |
rlimcn2.5 | β’ ((π β§ π₯ β β+) β βπ β β+ βπ β β+ βπ’ β π βπ£ β π (((absβ(π’ β π )) < π β§ (absβ(π£ β π)) < π ) β (absβ((π’πΉπ£) β (π πΉπ))) < π₯)) |
Ref | Expression |
---|---|
rlimcn2 | β’ (π β (π§ β π΄ β¦ (π΅πΉπΆ)) βπ (π πΉπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimcn2.1a | . 2 β’ ((π β§ π§ β π΄) β π΅ β π) | |
2 | rlimcn2.1b | . 2 β’ ((π β§ π§ β π΄) β πΆ β π) | |
3 | rlimcn2.4 | . . . 4 β’ (π β πΉ:(π Γ π)βΆβ) | |
4 | 3 | adantr 482 | . . 3 β’ ((π β§ π§ β π΄) β πΉ:(π Γ π)βΆβ) |
5 | 4, 1, 2 | fovcdmd 7579 | . 2 β’ ((π β§ π§ β π΄) β (π΅πΉπΆ) β β) |
6 | rlimcn2.2a | . . 3 β’ (π β π β π) | |
7 | rlimcn2.2b | . . 3 β’ (π β π β π) | |
8 | 3, 6, 7 | fovcdmd 7579 | . 2 β’ (π β (π πΉπ) β β) |
9 | rlimcn2.3a | . 2 β’ (π β (π§ β π΄ β¦ π΅) βπ π ) | |
10 | rlimcn2.3b | . 2 β’ (π β (π§ β π΄ β¦ πΆ) βπ π) | |
11 | rlimcn2.5 | . 2 β’ ((π β§ π₯ β β+) β βπ β β+ βπ β β+ βπ’ β π βπ£ β π (((absβ(π’ β π )) < π β§ (absβ(π£ β π)) < π ) β (absβ((π’πΉπ£) β (π πΉπ))) < π₯)) | |
12 | 1, 2, 5, 8, 9, 10, 11 | rlimcn3 15534 | 1 β’ (π β (π§ β π΄ β¦ (π΅πΉπΆ)) βπ (π πΉπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β wcel 2107 βwral 3062 βwrex 3071 class class class wbr 5149 β¦ cmpt 5232 Γ cxp 5675 βΆwf 6540 βcfv 6544 (class class class)co 7409 βcc 11108 < clt 11248 β cmin 11444 β+crp 12974 abscabs 15181 βπ crli 15429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-pre-lttri 11184 ax-pre-lttrn 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-pm 8823 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-rlim 15433 |
This theorem is referenced by: rlimaddOLD 15588 rlimsub 15589 rlimmulOLD 15591 |
Copyright terms: Public domain | W3C validator |