Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rlimcn2 | Structured version Visualization version GIF version |
Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 17-Sep-2014.) |
Ref | Expression |
---|---|
rlimcn2.1a | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐵 ∈ 𝑋) |
rlimcn2.1b | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐶 ∈ 𝑌) |
rlimcn2.2a | ⊢ (𝜑 → 𝑅 ∈ 𝑋) |
rlimcn2.2b | ⊢ (𝜑 → 𝑆 ∈ 𝑌) |
rlimcn2.3a | ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝑅) |
rlimcn2.3b | ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝑆) |
rlimcn2.4 | ⊢ (𝜑 → 𝐹:(𝑋 × 𝑌)⟶ℂ) |
rlimcn2.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((abs‘(𝑢 − 𝑅)) < 𝑟 ∧ (abs‘(𝑣 − 𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) |
Ref | Expression |
---|---|
rlimcn2 | ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimcn2.1a | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐵 ∈ 𝑋) | |
2 | rlimcn2.1b | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐶 ∈ 𝑌) | |
3 | rlimcn2.4 | . . . 4 ⊢ (𝜑 → 𝐹:(𝑋 × 𝑌)⟶ℂ) | |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐹:(𝑋 × 𝑌)⟶ℂ) |
5 | 4, 1, 2 | fovrnd 7435 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐵𝐹𝐶) ∈ ℂ) |
6 | rlimcn2.2a | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑋) | |
7 | rlimcn2.2b | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑌) | |
8 | 3, 6, 7 | fovrnd 7435 | . 2 ⊢ (𝜑 → (𝑅𝐹𝑆) ∈ ℂ) |
9 | rlimcn2.3a | . 2 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝑅) | |
10 | rlimcn2.3b | . 2 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝑆) | |
11 | rlimcn2.5 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((abs‘(𝑢 − 𝑅)) < 𝑟 ∧ (abs‘(𝑣 − 𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) | |
12 | 1, 2, 5, 8, 9, 10, 11 | rlimcn3 15280 | 1 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3065 ∃wrex 3066 class class class wbr 5078 ↦ cmpt 5161 × cxp 5586 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 < clt 10993 − cmin 11188 ℝ+crp 12712 abscabs 14926 ⇝𝑟 crli 15175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-pre-lttri 10929 ax-pre-lttrn 10930 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-pm 8592 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-rlim 15179 |
This theorem is referenced by: rlimaddOLD 15334 rlimsub 15335 rlimmulOLD 15337 |
Copyright terms: Public domain | W3C validator |