Proof of Theorem cxploglim2
Step | Hyp | Ref
| Expression |
1 | | 3re 12053 |
. . 3
⊢ 3 ∈
ℝ |
2 | 1 | a1i 11 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
→ 3 ∈ ℝ) |
3 | | 0red 10978 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
→ 0 ∈ ℝ) |
4 | 3 | recnd 11003 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
→ 0 ∈ ℂ) |
5 | | ovexd 7310 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ 𝑛 ∈
ℝ+) → ((log‘𝑛) / (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))) ∈ V) |
6 | | simpr 485 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
→ 𝐵 ∈
ℝ+) |
7 | | recl 14821 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(ℜ‘𝐴) ∈
ℝ) |
8 | 7 | adantr 481 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
→ (ℜ‘𝐴)
∈ ℝ) |
9 | | 1re 10975 |
. . . . . . 7
⊢ 1 ∈
ℝ |
10 | | ifcl 4504 |
. . . . . . 7
⊢
(((ℜ‘𝐴)
∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈
ℝ) |
11 | 8, 9, 10 | sylancl 586 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
→ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ) |
12 | 9 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
→ 1 ∈ ℝ) |
13 | | 0lt1 11497 |
. . . . . . . 8
⊢ 0 <
1 |
14 | 13 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
→ 0 < 1) |
15 | | max1 12919 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → 1 ≤ if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴),
1)) |
16 | 9, 8, 15 | sylancr 587 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
→ 1 ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) |
17 | 3, 12, 11, 14, 16 | ltletrd 11135 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
→ 0 < if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) |
18 | 11, 17 | elrpd 12769 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
→ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈
ℝ+) |
19 | 6, 18 | rpdivcld 12789 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
→ (𝐵 / if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1))
∈ ℝ+) |
20 | | cxploglim 26127 |
. . . 4
⊢ ((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈
ℝ+ → (𝑛 ∈ ℝ+ ↦
((log‘𝑛) / (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))))
⇝𝑟 0) |
21 | 19, 20 | syl 17 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
→ (𝑛 ∈
ℝ+ ↦ ((log‘𝑛) / (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))) ⇝𝑟
0) |
22 | 5, 21, 18 | rlimcxp 26123 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
→ (𝑛 ∈
ℝ+ ↦ (((log‘𝑛) / (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1)))
⇝𝑟 0) |
23 | 5, 21 | rlimmptrcl 15317 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ 𝑛 ∈
ℝ+) → ((log‘𝑛) / (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))) ∈ ℂ) |
24 | 11 | adantr 481 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ 𝑛 ∈
ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ) |
25 | 24 | recnd 11003 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ 𝑛 ∈
ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ) |
26 | 23, 25 | cxpcld 25863 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ 𝑛 ∈
ℝ+) → (((log‘𝑛) / (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1))
∈ ℂ) |
27 | | relogcl 25731 |
. . . . . 6
⊢ (𝑛 ∈ ℝ+
→ (log‘𝑛) ∈
ℝ) |
28 | 27 | adantl 482 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ 𝑛 ∈
ℝ+) → (log‘𝑛) ∈ ℝ) |
29 | 28 | recnd 11003 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ 𝑛 ∈
ℝ+) → (log‘𝑛) ∈ ℂ) |
30 | | simpll 764 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ 𝑛 ∈
ℝ+) → 𝐴 ∈ ℂ) |
31 | 29, 30 | cxpcld 25863 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ 𝑛 ∈
ℝ+) → ((log‘𝑛)↑𝑐𝐴) ∈ ℂ) |
32 | | simpr 485 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ 𝑛 ∈
ℝ+) → 𝑛 ∈ ℝ+) |
33 | | rpre 12738 |
. . . . . 6
⊢ (𝐵 ∈ ℝ+
→ 𝐵 ∈
ℝ) |
34 | 33 | ad2antlr 724 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ 𝑛 ∈
ℝ+) → 𝐵 ∈ ℝ) |
35 | 32, 34 | rpcxpcld 25887 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ 𝑛 ∈
ℝ+) → (𝑛↑𝑐𝐵) ∈
ℝ+) |
36 | 35 | rpcnd 12774 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ 𝑛 ∈
ℝ+) → (𝑛↑𝑐𝐵) ∈ ℂ) |
37 | 35 | rpne0d 12777 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ 𝑛 ∈
ℝ+) → (𝑛↑𝑐𝐵) ≠ 0) |
38 | 31, 36, 37 | divcld 11751 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ 𝑛 ∈
ℝ+) → (((log‘𝑛)↑𝑐𝐴) / (𝑛↑𝑐𝐵)) ∈ ℂ) |
39 | 38 | adantrr 714 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛)↑𝑐𝐴) / (𝑛↑𝑐𝐵)) ∈ ℂ) |
40 | 39 | abscld 15148 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛↑𝑐𝐵))) ∈ ℝ) |
41 | | rpre 12738 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℝ+
→ 𝑛 ∈
ℝ) |
42 | 41 | ad2antrl 725 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → 𝑛 ∈ ℝ) |
43 | 9 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → 1 ∈ ℝ) |
44 | 1 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → 3 ∈ ℝ) |
45 | | 1lt3 12146 |
. . . . . . . . . 10
⊢ 1 <
3 |
46 | 45 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → 1 < 3) |
47 | | simprr 770 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → 3 ≤ 𝑛) |
48 | 43, 44, 42, 46, 47 | ltletrd 11135 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → 1 < 𝑛) |
49 | 42, 48 | rplogcld 25784 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (log‘𝑛) ∈
ℝ+) |
50 | 32 | adantrr 714 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → 𝑛 ∈ ℝ+) |
51 | 33 | ad2antlr 724 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → 𝐵 ∈ ℝ) |
52 | 18 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈
ℝ+) |
53 | 51, 52 | rerpdivcld 12803 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ) |
54 | 50, 53 | rpcxpcld 25887 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ∈
ℝ+) |
55 | 49, 54 | rpdivcld 12789 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛) / (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))) ∈
ℝ+) |
56 | 11 | adantr 481 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈
ℝ) |
57 | 55, 56 | rpcxpcld 25887 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1))
∈ ℝ+) |
58 | 57 | rpred 12772 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1))
∈ ℝ) |
59 | 26 | adantrr 714 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1))
∈ ℂ) |
60 | 59 | abscld 15148 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛) / (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1)))
∈ ℝ) |
61 | 31 | adantrr 714 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐𝐴) ∈ ℂ) |
62 | 61 | abscld 15148 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((log‘𝑛)↑𝑐𝐴)) ∈
ℝ) |
63 | 49, 56 | rpcxpcld 25887 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1))
∈ ℝ+) |
64 | 63 | rpred 12772 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1))
∈ ℝ) |
65 | 35 | adantrr 714 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛↑𝑐𝐵) ∈
ℝ+) |
66 | | simpll 764 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → 𝐴 ∈ ℂ) |
67 | | abscxp 25847 |
. . . . . . . 8
⊢
(((log‘𝑛)
∈ ℝ+ ∧ 𝐴 ∈ ℂ) →
(abs‘((log‘𝑛)↑𝑐𝐴)) = ((log‘𝑛)↑𝑐(ℜ‘𝐴))) |
68 | 49, 66, 67 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((log‘𝑛)↑𝑐𝐴)) = ((log‘𝑛)↑𝑐(ℜ‘𝐴))) |
69 | 66 | recld 14905 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (ℜ‘𝐴) ∈ ℝ) |
70 | | max2 12921 |
. . . . . . . . 9
⊢ ((1
∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (ℜ‘𝐴) ≤ if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴),
1)) |
71 | 9, 69, 70 | sylancr 587 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (ℜ‘𝐴) ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) |
72 | 27 | ad2antrl 725 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (log‘𝑛) ∈ ℝ) |
73 | | loge 25742 |
. . . . . . . . . 10
⊢
(log‘e) = 1 |
74 | | ere 15798 |
. . . . . . . . . . . . 13
⊢ e ∈
ℝ |
75 | 74 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → e ∈ ℝ) |
76 | | egt2lt3 15915 |
. . . . . . . . . . . . . 14
⊢ (2 < e
∧ e < 3) |
77 | 76 | simpri 486 |
. . . . . . . . . . . . 13
⊢ e <
3 |
78 | 77 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → e < 3) |
79 | 75, 44, 42, 78, 47 | ltletrd 11135 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → e < 𝑛) |
80 | | epr 15917 |
. . . . . . . . . . . 12
⊢ e ∈
ℝ+ |
81 | | logltb 25755 |
. . . . . . . . . . . 12
⊢ ((e
∈ ℝ+ ∧ 𝑛 ∈ ℝ+) → (e <
𝑛 ↔ (log‘e) <
(log‘𝑛))) |
82 | 80, 50, 81 | sylancr 587 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (e < 𝑛 ↔ (log‘e) < (log‘𝑛))) |
83 | 79, 82 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (log‘e) < (log‘𝑛)) |
84 | 73, 83 | eqbrtrrid 5110 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → 1 < (log‘𝑛)) |
85 | 72, 84, 69, 56 | cxpled 25875 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → ((ℜ‘𝐴) ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ↔ ((log‘𝑛)↑𝑐(ℜ‘𝐴)) ≤ ((log‘𝑛)↑𝑐if(1
≤ (ℜ‘𝐴),
(ℜ‘𝐴),
1)))) |
86 | 71, 85 | mpbid 231 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐(ℜ‘𝐴)) ≤ ((log‘𝑛)↑𝑐if(1
≤ (ℜ‘𝐴),
(ℜ‘𝐴),
1))) |
87 | 68, 86 | eqbrtrd 5096 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((log‘𝑛)↑𝑐𝐴)) ≤ ((log‘𝑛)↑𝑐if(1
≤ (ℜ‘𝐴),
(ℜ‘𝐴),
1))) |
88 | 62, 64, 65, 87 | lediv1dd 12830 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → ((abs‘((log‘𝑛)↑𝑐𝐴)) / (𝑛↑𝑐𝐵)) ≤ (((log‘𝑛)↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1)) /
(𝑛↑𝑐𝐵))) |
89 | 31, 36, 37 | absdivd 15167 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ 𝑛 ∈
ℝ+) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛↑𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (abs‘(𝑛↑𝑐𝐵)))) |
90 | 89 | adantrr 714 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛↑𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (abs‘(𝑛↑𝑐𝐵)))) |
91 | 65 | rprege0d 12779 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → ((𝑛↑𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝑛↑𝑐𝐵))) |
92 | | absid 15008 |
. . . . . . . 8
⊢ (((𝑛↑𝑐𝐵) ∈ ℝ ∧ 0 ≤
(𝑛↑𝑐𝐵)) → (abs‘(𝑛↑𝑐𝐵)) = (𝑛↑𝑐𝐵)) |
93 | 91, 92 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(𝑛↑𝑐𝐵)) = (𝑛↑𝑐𝐵)) |
94 | 93 | oveq2d 7291 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → ((abs‘((log‘𝑛)↑𝑐𝐴)) / (abs‘(𝑛↑𝑐𝐵))) =
((abs‘((log‘𝑛)↑𝑐𝐴)) / (𝑛↑𝑐𝐵))) |
95 | 90, 94 | eqtrd 2778 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛↑𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (𝑛↑𝑐𝐵))) |
96 | 49 | rprege0d 12779 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛) ∈ ℝ ∧ 0 ≤
(log‘𝑛))) |
97 | 11 | recnd 11003 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
→ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ) |
98 | 97 | adantr 481 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈
ℂ) |
99 | | divcxp 25842 |
. . . . . . 7
⊢
((((log‘𝑛)
∈ ℝ ∧ 0 ≤ (log‘𝑛)) ∧ (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ∈ ℝ+ ∧
if(1 ≤ (ℜ‘𝐴),
(ℜ‘𝐴), 1) ∈
ℂ) → (((log‘𝑛) / (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1)) =
(((log‘𝑛)↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1)) /
((𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴),
1)))) |
100 | 96, 54, 98, 99 | syl3anc 1370 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1)) =
(((log‘𝑛)↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1)) /
((𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴),
1)))) |
101 | 50, 53, 98 | cxpmuld 25891 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛↑𝑐((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) · if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1))) =
((𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴),
1))) |
102 | 51 | recnd 11003 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → 𝐵 ∈ ℂ) |
103 | 52 | rpne0d 12777 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ≠ 0) |
104 | 102, 98, 103 | divcan1d 11752 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → ((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) · if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1)) =
𝐵) |
105 | 104 | oveq2d 7291 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛↑𝑐((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) · if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1))) =
(𝑛↑𝑐𝐵)) |
106 | 101, 105 | eqtr3d 2780 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → ((𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1)) =
(𝑛↑𝑐𝐵)) |
107 | 106 | oveq2d 7291 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛)↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1)) /
((𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1))) =
(((log‘𝑛)↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1)) /
(𝑛↑𝑐𝐵))) |
108 | 100, 107 | eqtrd 2778 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1)) =
(((log‘𝑛)↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1)) /
(𝑛↑𝑐𝐵))) |
109 | 88, 95, 108 | 3brtr4d 5106 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛↑𝑐𝐵))) ≤ (((log‘𝑛) / (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴),
1))) |
110 | 58 | leabsd 15126 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1)) ≤
(abs‘(((log‘𝑛)
/ (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴),
1)))) |
111 | 40, 58, 60, 109, 110 | letrd 11132 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛↑𝑐𝐵))) ≤ (abs‘(((log‘𝑛) / (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴),
1)))) |
112 | 39 | subid1d 11321 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → ((((log‘𝑛)↑𝑐𝐴) / (𝑛↑𝑐𝐵)) − 0) = (((log‘𝑛)↑𝑐𝐴) / (𝑛↑𝑐𝐵))) |
113 | 112 | fveq2d 6778 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((((log‘𝑛)↑𝑐𝐴) / (𝑛↑𝑐𝐵)) − 0)) =
(abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛↑𝑐𝐵)))) |
114 | 59 | subid1d 11321 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → ((((log‘𝑛) / (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1))
− 0) = (((log‘𝑛) / (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴),
1))) |
115 | 114 | fveq2d 6778 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((((log‘𝑛) / (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1))
− 0)) = (abs‘(((log‘𝑛) / (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴),
1)))) |
116 | 111, 113,
115 | 3brtr4d 5106 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
∧ (𝑛 ∈
ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((((log‘𝑛)↑𝑐𝐴) / (𝑛↑𝑐𝐵)) − 0)) ≤
(abs‘((((log‘𝑛)
/ (𝑛↑𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤
(ℜ‘𝐴),
(ℜ‘𝐴), 1))
− 0))) |
117 | 2, 4, 22, 26, 38, 116 | rlimsqzlem 15360 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+)
→ (𝑛 ∈
ℝ+ ↦ (((log‘𝑛)↑𝑐𝐴) / (𝑛↑𝑐𝐵))) ⇝𝑟
0) |