MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxploglim2 Structured version   Visualization version   GIF version

Theorem cxploglim2 26905
Description: Every power of the logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 20-May-2016.)
Assertion
Ref Expression
cxploglim2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ⇝𝑟 0)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛

Proof of Theorem cxploglim2
StepHypRef Expression
1 3re 12226 . . 3 3 ∈ ℝ
21a1i 11 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 3 ∈ ℝ)
3 0red 11137 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 0 ∈ ℝ)
43recnd 11162 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 0 ∈ ℂ)
5 ovexd 7388 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))) ∈ V)
6 simpr 484 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
7 recl 15035 . . . . . . . 8 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
87adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (ℜ‘𝐴) ∈ ℝ)
9 1re 11134 . . . . . . 7 1 ∈ ℝ
10 ifcl 4524 . . . . . . 7 (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ)
118, 9, 10sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ)
129a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 1 ∈ ℝ)
13 0lt1 11660 . . . . . . . 8 0 < 1
1413a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 0 < 1)
15 max1 13105 . . . . . . . 8 ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → 1 ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
169, 8, 15sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 1 ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
173, 12, 11, 14, 16ltletrd 11294 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 0 < if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
1811, 17elrpd 12952 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ+)
196, 18rpdivcld 12972 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ+)
20 cxploglim 26904 . . . 4 ((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))) ⇝𝑟 0)
2119, 20syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))) ⇝𝑟 0)
225, 21, 18rlimcxp 26900 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ⇝𝑟 0)
235, 21rlimmptrcl 15533 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))) ∈ ℂ)
2411adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ)
2524recnd 11162 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ)
2623, 25cxpcld 26633 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℂ)
27 relogcl 26500 . . . . . 6 (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ)
2827adantl 481 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (log‘𝑛) ∈ ℝ)
2928recnd 11162 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (log‘𝑛) ∈ ℂ)
30 simpll 766 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℂ)
3129, 30cxpcld 26633 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛)↑𝑐𝐴) ∈ ℂ)
32 simpr 484 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ+)
33 rpre 12920 . . . . . 6 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
3433ad2antlr 727 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → 𝐵 ∈ ℝ)
3532, 34rpcxpcld 26658 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐𝐵) ∈ ℝ+)
3635rpcnd 12957 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐𝐵) ∈ ℂ)
3735rpne0d 12960 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐𝐵) ≠ 0)
3831, 36, 37divcld 11918 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) ∈ ℂ)
3938adantrr 717 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) ∈ ℂ)
4039abscld 15364 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ∈ ℝ)
41 rpre 12920 . . . . . . . . 9 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
4241ad2antrl 728 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝑛 ∈ ℝ)
439a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 1 ∈ ℝ)
441a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 3 ∈ ℝ)
45 1lt3 12314 . . . . . . . . . 10 1 < 3
4645a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 1 < 3)
47 simprr 772 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 3 ≤ 𝑛)
4843, 44, 42, 46, 47ltletrd 11294 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 1 < 𝑛)
4942, 48rplogcld 26554 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (log‘𝑛) ∈ ℝ+)
5032adantrr 717 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝑛 ∈ ℝ+)
5133ad2antlr 727 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝐵 ∈ ℝ)
5218adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ+)
5351, 52rerpdivcld 12986 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ)
5450, 53rpcxpcld 26658 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ∈ ℝ+)
5549, 54rpdivcld 12972 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))) ∈ ℝ+)
5611adantr 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ)
5755, 56rpcxpcld 26658 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ+)
5857rpred 12955 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ)
5926adantrr 717 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℂ)
6059abscld 15364 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ∈ ℝ)
6131adantrr 717 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐𝐴) ∈ ℂ)
6261abscld 15364 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((log‘𝑛)↑𝑐𝐴)) ∈ ℝ)
6349, 56rpcxpcld 26658 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ+)
6463rpred 12955 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ)
6535adantrr 717 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛𝑐𝐵) ∈ ℝ+)
66 simpll 766 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝐴 ∈ ℂ)
67 abscxp 26617 . . . . . . . 8 (((log‘𝑛) ∈ ℝ+𝐴 ∈ ℂ) → (abs‘((log‘𝑛)↑𝑐𝐴)) = ((log‘𝑛)↑𝑐(ℜ‘𝐴)))
6849, 66, 67syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((log‘𝑛)↑𝑐𝐴)) = ((log‘𝑛)↑𝑐(ℜ‘𝐴)))
6966recld 15119 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (ℜ‘𝐴) ∈ ℝ)
70 max2 13107 . . . . . . . . 9 ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (ℜ‘𝐴) ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
719, 69, 70sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (ℜ‘𝐴) ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
7227ad2antrl 728 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (log‘𝑛) ∈ ℝ)
73 loge 26511 . . . . . . . . . 10 (log‘e) = 1
74 ere 16014 . . . . . . . . . . . . 13 e ∈ ℝ
7574a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → e ∈ ℝ)
76 egt2lt3 16133 . . . . . . . . . . . . . 14 (2 < e ∧ e < 3)
7776simpri 485 . . . . . . . . . . . . 13 e < 3
7877a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → e < 3)
7975, 44, 42, 78, 47ltletrd 11294 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → e < 𝑛)
80 epr 16135 . . . . . . . . . . . 12 e ∈ ℝ+
81 logltb 26525 . . . . . . . . . . . 12 ((e ∈ ℝ+𝑛 ∈ ℝ+) → (e < 𝑛 ↔ (log‘e) < (log‘𝑛)))
8280, 50, 81sylancr 587 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (e < 𝑛 ↔ (log‘e) < (log‘𝑛)))
8379, 82mpbid 232 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (log‘e) < (log‘𝑛))
8473, 83eqbrtrrid 5131 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 1 < (log‘𝑛))
8572, 84, 69, 56cxpled 26645 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((ℜ‘𝐴) ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ↔ ((log‘𝑛)↑𝑐(ℜ‘𝐴)) ≤ ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
8671, 85mpbid 232 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐(ℜ‘𝐴)) ≤ ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
8768, 86eqbrtrd 5117 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((log‘𝑛)↑𝑐𝐴)) ≤ ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
8862, 64, 65, 87lediv1dd 13013 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((abs‘((log‘𝑛)↑𝑐𝐴)) / (𝑛𝑐𝐵)) ≤ (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / (𝑛𝑐𝐵)))
8931, 36, 37absdivd 15383 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (abs‘(𝑛𝑐𝐵))))
9089adantrr 717 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (abs‘(𝑛𝑐𝐵))))
9165rprege0d 12962 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((𝑛𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝑛𝑐𝐵)))
92 absid 15221 . . . . . . . 8 (((𝑛𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝑛𝑐𝐵)) → (abs‘(𝑛𝑐𝐵)) = (𝑛𝑐𝐵))
9391, 92syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(𝑛𝑐𝐵)) = (𝑛𝑐𝐵))
9493oveq2d 7369 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((abs‘((log‘𝑛)↑𝑐𝐴)) / (abs‘(𝑛𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (𝑛𝑐𝐵)))
9590, 94eqtrd 2764 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (𝑛𝑐𝐵)))
9649rprege0d 12962 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛) ∈ ℝ ∧ 0 ≤ (log‘𝑛)))
9711recnd 11162 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ)
9897adantr 480 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ)
99 divcxp 26612 . . . . . . 7 ((((log‘𝑛) ∈ ℝ ∧ 0 ≤ (log‘𝑛)) ∧ (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ∈ ℝ+ ∧ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
10096, 54, 98, 99syl3anc 1373 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
10150, 53, 98cxpmuld 26662 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛𝑐((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) · if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) = ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
10251recnd 11162 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝐵 ∈ ℂ)
10352rpne0d 12960 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ≠ 0)
104102, 98, 103divcan1d 11919 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) · if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = 𝐵)
105104oveq2d 7369 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛𝑐((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) · if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) = (𝑛𝑐𝐵))
106101, 105eqtr3d 2766 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = (𝑛𝑐𝐵))
107106oveq2d 7369 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) = (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / (𝑛𝑐𝐵)))
108100, 107eqtrd 2764 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / (𝑛𝑐𝐵)))
10988, 95, 1083brtr4d 5127 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ≤ (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
11058leabsd 15340 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ≤ (abs‘(((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
11140, 58, 60, 109, 110letrd 11291 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ≤ (abs‘(((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
11239subid1d 11482 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) − 0) = (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)))
113112fveq2d 6830 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) − 0)) = (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))))
11459subid1d 11482 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) − 0) = (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
115114fveq2d 6830 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) − 0)) = (abs‘(((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
116111, 113, 1153brtr4d 5127 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) − 0)) ≤ (abs‘((((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) − 0)))
1172, 4, 22, 26, 38, 116rlimsqzlem 15574 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  ifcif 4478   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   · cmul 11033   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  2c2 12201  3c3 12202  +crp 12911  cre 15022  abscabs 15159  𝑟 crli 15410  eceu 15987  logclog 26479  𝑐ccxp 26480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-e 15993  df-sin 15994  df-cos 15995  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481  df-cxp 26482
This theorem is referenced by:  logexprlim  27152
  Copyright terms: Public domain W3C validator