MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxploglim2 Structured version   Visualization version   GIF version

Theorem cxploglim2 26889
Description: Every power of the logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 20-May-2016.)
Assertion
Ref Expression
cxploglim2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ⇝𝑟 0)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛

Proof of Theorem cxploglim2
StepHypRef Expression
1 3re 12266 . . 3 3 ∈ ℝ
21a1i 11 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 3 ∈ ℝ)
3 0red 11177 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 0 ∈ ℝ)
43recnd 11202 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 0 ∈ ℂ)
5 ovexd 7422 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))) ∈ V)
6 simpr 484 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
7 recl 15076 . . . . . . . 8 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
87adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (ℜ‘𝐴) ∈ ℝ)
9 1re 11174 . . . . . . 7 1 ∈ ℝ
10 ifcl 4534 . . . . . . 7 (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ)
118, 9, 10sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ)
129a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 1 ∈ ℝ)
13 0lt1 11700 . . . . . . . 8 0 < 1
1413a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 0 < 1)
15 max1 13145 . . . . . . . 8 ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → 1 ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
169, 8, 15sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 1 ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
173, 12, 11, 14, 16ltletrd 11334 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 0 < if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
1811, 17elrpd 12992 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ+)
196, 18rpdivcld 13012 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ+)
20 cxploglim 26888 . . . 4 ((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))) ⇝𝑟 0)
2119, 20syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))) ⇝𝑟 0)
225, 21, 18rlimcxp 26884 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ⇝𝑟 0)
235, 21rlimmptrcl 15574 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))) ∈ ℂ)
2411adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ)
2524recnd 11202 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ)
2623, 25cxpcld 26617 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℂ)
27 relogcl 26484 . . . . . 6 (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ)
2827adantl 481 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (log‘𝑛) ∈ ℝ)
2928recnd 11202 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (log‘𝑛) ∈ ℂ)
30 simpll 766 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℂ)
3129, 30cxpcld 26617 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛)↑𝑐𝐴) ∈ ℂ)
32 simpr 484 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ+)
33 rpre 12960 . . . . . 6 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
3433ad2antlr 727 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → 𝐵 ∈ ℝ)
3532, 34rpcxpcld 26642 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐𝐵) ∈ ℝ+)
3635rpcnd 12997 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐𝐵) ∈ ℂ)
3735rpne0d 13000 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐𝐵) ≠ 0)
3831, 36, 37divcld 11958 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) ∈ ℂ)
3938adantrr 717 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) ∈ ℂ)
4039abscld 15405 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ∈ ℝ)
41 rpre 12960 . . . . . . . . 9 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
4241ad2antrl 728 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝑛 ∈ ℝ)
439a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 1 ∈ ℝ)
441a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 3 ∈ ℝ)
45 1lt3 12354 . . . . . . . . . 10 1 < 3
4645a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 1 < 3)
47 simprr 772 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 3 ≤ 𝑛)
4843, 44, 42, 46, 47ltletrd 11334 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 1 < 𝑛)
4942, 48rplogcld 26538 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (log‘𝑛) ∈ ℝ+)
5032adantrr 717 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝑛 ∈ ℝ+)
5133ad2antlr 727 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝐵 ∈ ℝ)
5218adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ+)
5351, 52rerpdivcld 13026 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ)
5450, 53rpcxpcld 26642 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ∈ ℝ+)
5549, 54rpdivcld 13012 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))) ∈ ℝ+)
5611adantr 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ)
5755, 56rpcxpcld 26642 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ+)
5857rpred 12995 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ)
5926adantrr 717 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℂ)
6059abscld 15405 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ∈ ℝ)
6131adantrr 717 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐𝐴) ∈ ℂ)
6261abscld 15405 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((log‘𝑛)↑𝑐𝐴)) ∈ ℝ)
6349, 56rpcxpcld 26642 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ+)
6463rpred 12995 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ)
6535adantrr 717 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛𝑐𝐵) ∈ ℝ+)
66 simpll 766 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝐴 ∈ ℂ)
67 abscxp 26601 . . . . . . . 8 (((log‘𝑛) ∈ ℝ+𝐴 ∈ ℂ) → (abs‘((log‘𝑛)↑𝑐𝐴)) = ((log‘𝑛)↑𝑐(ℜ‘𝐴)))
6849, 66, 67syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((log‘𝑛)↑𝑐𝐴)) = ((log‘𝑛)↑𝑐(ℜ‘𝐴)))
6966recld 15160 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (ℜ‘𝐴) ∈ ℝ)
70 max2 13147 . . . . . . . . 9 ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (ℜ‘𝐴) ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
719, 69, 70sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (ℜ‘𝐴) ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
7227ad2antrl 728 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (log‘𝑛) ∈ ℝ)
73 loge 26495 . . . . . . . . . 10 (log‘e) = 1
74 ere 16055 . . . . . . . . . . . . 13 e ∈ ℝ
7574a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → e ∈ ℝ)
76 egt2lt3 16174 . . . . . . . . . . . . . 14 (2 < e ∧ e < 3)
7776simpri 485 . . . . . . . . . . . . 13 e < 3
7877a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → e < 3)
7975, 44, 42, 78, 47ltletrd 11334 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → e < 𝑛)
80 epr 16176 . . . . . . . . . . . 12 e ∈ ℝ+
81 logltb 26509 . . . . . . . . . . . 12 ((e ∈ ℝ+𝑛 ∈ ℝ+) → (e < 𝑛 ↔ (log‘e) < (log‘𝑛)))
8280, 50, 81sylancr 587 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (e < 𝑛 ↔ (log‘e) < (log‘𝑛)))
8379, 82mpbid 232 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (log‘e) < (log‘𝑛))
8473, 83eqbrtrrid 5143 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 1 < (log‘𝑛))
8572, 84, 69, 56cxpled 26629 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((ℜ‘𝐴) ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ↔ ((log‘𝑛)↑𝑐(ℜ‘𝐴)) ≤ ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
8671, 85mpbid 232 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐(ℜ‘𝐴)) ≤ ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
8768, 86eqbrtrd 5129 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((log‘𝑛)↑𝑐𝐴)) ≤ ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
8862, 64, 65, 87lediv1dd 13053 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((abs‘((log‘𝑛)↑𝑐𝐴)) / (𝑛𝑐𝐵)) ≤ (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / (𝑛𝑐𝐵)))
8931, 36, 37absdivd 15424 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (abs‘(𝑛𝑐𝐵))))
9089adantrr 717 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (abs‘(𝑛𝑐𝐵))))
9165rprege0d 13002 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((𝑛𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝑛𝑐𝐵)))
92 absid 15262 . . . . . . . 8 (((𝑛𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝑛𝑐𝐵)) → (abs‘(𝑛𝑐𝐵)) = (𝑛𝑐𝐵))
9391, 92syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(𝑛𝑐𝐵)) = (𝑛𝑐𝐵))
9493oveq2d 7403 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((abs‘((log‘𝑛)↑𝑐𝐴)) / (abs‘(𝑛𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (𝑛𝑐𝐵)))
9590, 94eqtrd 2764 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (𝑛𝑐𝐵)))
9649rprege0d 13002 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛) ∈ ℝ ∧ 0 ≤ (log‘𝑛)))
9711recnd 11202 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ)
9897adantr 480 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ)
99 divcxp 26596 . . . . . . 7 ((((log‘𝑛) ∈ ℝ ∧ 0 ≤ (log‘𝑛)) ∧ (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ∈ ℝ+ ∧ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
10096, 54, 98, 99syl3anc 1373 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
10150, 53, 98cxpmuld 26646 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛𝑐((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) · if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) = ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
10251recnd 11202 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝐵 ∈ ℂ)
10352rpne0d 13000 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ≠ 0)
104102, 98, 103divcan1d 11959 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) · if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = 𝐵)
105104oveq2d 7403 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛𝑐((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) · if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) = (𝑛𝑐𝐵))
106101, 105eqtr3d 2766 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = (𝑛𝑐𝐵))
107106oveq2d 7403 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) = (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / (𝑛𝑐𝐵)))
108100, 107eqtrd 2764 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / (𝑛𝑐𝐵)))
10988, 95, 1083brtr4d 5139 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ≤ (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
11058leabsd 15381 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ≤ (abs‘(((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
11140, 58, 60, 109, 110letrd 11331 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ≤ (abs‘(((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
11239subid1d 11522 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) − 0) = (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)))
113112fveq2d 6862 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) − 0)) = (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))))
11459subid1d 11522 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) − 0) = (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
115114fveq2d 6862 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) − 0)) = (abs‘(((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
116111, 113, 1153brtr4d 5139 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) − 0)) ≤ (abs‘((((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) − 0)))
1172, 4, 22, 26, 38, 116rlimsqzlem 15615 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  ifcif 4488   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  2c2 12241  3c3 12242  +crp 12951  cre 15063  abscabs 15200  𝑟 crli 15451  eceu 16028  logclog 26463  𝑐ccxp 26464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-e 16034  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466
This theorem is referenced by:  logexprlim  27136
  Copyright terms: Public domain W3C validator