MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxploglim2 Structured version   Visualization version   GIF version

Theorem cxploglim2 26328
Description: Every power of the logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 20-May-2016.)
Assertion
Ref Expression
cxploglim2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ⇝𝑟 0)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛

Proof of Theorem cxploglim2
StepHypRef Expression
1 3re 12233 . . 3 3 ∈ ℝ
21a1i 11 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 3 ∈ ℝ)
3 0red 11158 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 0 ∈ ℝ)
43recnd 11183 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 0 ∈ ℂ)
5 ovexd 7392 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))) ∈ V)
6 simpr 485 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
7 recl 14995 . . . . . . . 8 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
87adantr 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (ℜ‘𝐴) ∈ ℝ)
9 1re 11155 . . . . . . 7 1 ∈ ℝ
10 ifcl 4531 . . . . . . 7 (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ)
118, 9, 10sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ)
129a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 1 ∈ ℝ)
13 0lt1 11677 . . . . . . . 8 0 < 1
1413a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 0 < 1)
15 max1 13104 . . . . . . . 8 ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → 1 ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
169, 8, 15sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 1 ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
173, 12, 11, 14, 16ltletrd 11315 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 0 < if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
1811, 17elrpd 12954 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ+)
196, 18rpdivcld 12974 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ+)
20 cxploglim 26327 . . . 4 ((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))) ⇝𝑟 0)
2119, 20syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))) ⇝𝑟 0)
225, 21, 18rlimcxp 26323 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ⇝𝑟 0)
235, 21rlimmptrcl 15490 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))) ∈ ℂ)
2411adantr 481 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ)
2524recnd 11183 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ)
2623, 25cxpcld 26063 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℂ)
27 relogcl 25931 . . . . . 6 (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ)
2827adantl 482 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (log‘𝑛) ∈ ℝ)
2928recnd 11183 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (log‘𝑛) ∈ ℂ)
30 simpll 765 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℂ)
3129, 30cxpcld 26063 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛)↑𝑐𝐴) ∈ ℂ)
32 simpr 485 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ+)
33 rpre 12923 . . . . . 6 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
3433ad2antlr 725 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → 𝐵 ∈ ℝ)
3532, 34rpcxpcld 26087 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐𝐵) ∈ ℝ+)
3635rpcnd 12959 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐𝐵) ∈ ℂ)
3735rpne0d 12962 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐𝐵) ≠ 0)
3831, 36, 37divcld 11931 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) ∈ ℂ)
3938adantrr 715 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) ∈ ℂ)
4039abscld 15321 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ∈ ℝ)
41 rpre 12923 . . . . . . . . 9 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
4241ad2antrl 726 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝑛 ∈ ℝ)
439a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 1 ∈ ℝ)
441a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 3 ∈ ℝ)
45 1lt3 12326 . . . . . . . . . 10 1 < 3
4645a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 1 < 3)
47 simprr 771 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 3 ≤ 𝑛)
4843, 44, 42, 46, 47ltletrd 11315 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 1 < 𝑛)
4942, 48rplogcld 25984 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (log‘𝑛) ∈ ℝ+)
5032adantrr 715 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝑛 ∈ ℝ+)
5133ad2antlr 725 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝐵 ∈ ℝ)
5218adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ+)
5351, 52rerpdivcld 12988 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ)
5450, 53rpcxpcld 26087 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ∈ ℝ+)
5549, 54rpdivcld 12974 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))) ∈ ℝ+)
5611adantr 481 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ)
5755, 56rpcxpcld 26087 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ+)
5857rpred 12957 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ)
5926adantrr 715 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℂ)
6059abscld 15321 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ∈ ℝ)
6131adantrr 715 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐𝐴) ∈ ℂ)
6261abscld 15321 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((log‘𝑛)↑𝑐𝐴)) ∈ ℝ)
6349, 56rpcxpcld 26087 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ+)
6463rpred 12957 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ)
6535adantrr 715 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛𝑐𝐵) ∈ ℝ+)
66 simpll 765 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝐴 ∈ ℂ)
67 abscxp 26047 . . . . . . . 8 (((log‘𝑛) ∈ ℝ+𝐴 ∈ ℂ) → (abs‘((log‘𝑛)↑𝑐𝐴)) = ((log‘𝑛)↑𝑐(ℜ‘𝐴)))
6849, 66, 67syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((log‘𝑛)↑𝑐𝐴)) = ((log‘𝑛)↑𝑐(ℜ‘𝐴)))
6966recld 15079 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (ℜ‘𝐴) ∈ ℝ)
70 max2 13106 . . . . . . . . 9 ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (ℜ‘𝐴) ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
719, 69, 70sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (ℜ‘𝐴) ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
7227ad2antrl 726 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (log‘𝑛) ∈ ℝ)
73 loge 25942 . . . . . . . . . 10 (log‘e) = 1
74 ere 15971 . . . . . . . . . . . . 13 e ∈ ℝ
7574a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → e ∈ ℝ)
76 egt2lt3 16088 . . . . . . . . . . . . . 14 (2 < e ∧ e < 3)
7776simpri 486 . . . . . . . . . . . . 13 e < 3
7877a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → e < 3)
7975, 44, 42, 78, 47ltletrd 11315 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → e < 𝑛)
80 epr 16090 . . . . . . . . . . . 12 e ∈ ℝ+
81 logltb 25955 . . . . . . . . . . . 12 ((e ∈ ℝ+𝑛 ∈ ℝ+) → (e < 𝑛 ↔ (log‘e) < (log‘𝑛)))
8280, 50, 81sylancr 587 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (e < 𝑛 ↔ (log‘e) < (log‘𝑛)))
8379, 82mpbid 231 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (log‘e) < (log‘𝑛))
8473, 83eqbrtrrid 5141 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 1 < (log‘𝑛))
8572, 84, 69, 56cxpled 26075 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((ℜ‘𝐴) ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ↔ ((log‘𝑛)↑𝑐(ℜ‘𝐴)) ≤ ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
8671, 85mpbid 231 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐(ℜ‘𝐴)) ≤ ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
8768, 86eqbrtrd 5127 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((log‘𝑛)↑𝑐𝐴)) ≤ ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
8862, 64, 65, 87lediv1dd 13015 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((abs‘((log‘𝑛)↑𝑐𝐴)) / (𝑛𝑐𝐵)) ≤ (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / (𝑛𝑐𝐵)))
8931, 36, 37absdivd 15340 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (abs‘(𝑛𝑐𝐵))))
9089adantrr 715 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (abs‘(𝑛𝑐𝐵))))
9165rprege0d 12964 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((𝑛𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝑛𝑐𝐵)))
92 absid 15181 . . . . . . . 8 (((𝑛𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝑛𝑐𝐵)) → (abs‘(𝑛𝑐𝐵)) = (𝑛𝑐𝐵))
9391, 92syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(𝑛𝑐𝐵)) = (𝑛𝑐𝐵))
9493oveq2d 7373 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((abs‘((log‘𝑛)↑𝑐𝐴)) / (abs‘(𝑛𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (𝑛𝑐𝐵)))
9590, 94eqtrd 2776 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (𝑛𝑐𝐵)))
9649rprege0d 12964 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛) ∈ ℝ ∧ 0 ≤ (log‘𝑛)))
9711recnd 11183 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ)
9897adantr 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ)
99 divcxp 26042 . . . . . . 7 ((((log‘𝑛) ∈ ℝ ∧ 0 ≤ (log‘𝑛)) ∧ (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ∈ ℝ+ ∧ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
10096, 54, 98, 99syl3anc 1371 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
10150, 53, 98cxpmuld 26091 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛𝑐((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) · if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) = ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
10251recnd 11183 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝐵 ∈ ℂ)
10352rpne0d 12962 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ≠ 0)
104102, 98, 103divcan1d 11932 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) · if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = 𝐵)
105104oveq2d 7373 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛𝑐((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) · if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) = (𝑛𝑐𝐵))
106101, 105eqtr3d 2778 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = (𝑛𝑐𝐵))
107106oveq2d 7373 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) = (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / (𝑛𝑐𝐵)))
108100, 107eqtrd 2776 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / (𝑛𝑐𝐵)))
10988, 95, 1083brtr4d 5137 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ≤ (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
11058leabsd 15299 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ≤ (abs‘(((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
11140, 58, 60, 109, 110letrd 11312 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ≤ (abs‘(((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
11239subid1d 11501 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) − 0) = (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)))
113112fveq2d 6846 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) − 0)) = (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))))
11459subid1d 11501 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) − 0) = (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
115114fveq2d 6846 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) − 0)) = (abs‘(((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
116111, 113, 1153brtr4d 5137 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) − 0)) ≤ (abs‘((((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) − 0)))
1172, 4, 22, 26, 38, 116rlimsqzlem 15533 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  ifcif 4486   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  2c2 12208  3c3 12209  +crp 12915  cre 14982  abscabs 15119  𝑟 crli 15367  eceu 15945  logclog 25910  𝑐ccxp 25911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-e 15951  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913
This theorem is referenced by:  logexprlim  26573
  Copyright terms: Public domain W3C validator