MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxploglim2 Structured version   Visualization version   GIF version

Theorem cxploglim2 25861
Description: Every power of the logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 20-May-2016.)
Assertion
Ref Expression
cxploglim2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ⇝𝑟 0)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛

Proof of Theorem cxploglim2
StepHypRef Expression
1 3re 11910 . . 3 3 ∈ ℝ
21a1i 11 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 3 ∈ ℝ)
3 0red 10836 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 0 ∈ ℝ)
43recnd 10861 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 0 ∈ ℂ)
5 ovexd 7248 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))) ∈ V)
6 simpr 488 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
7 recl 14673 . . . . . . . 8 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
87adantr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (ℜ‘𝐴) ∈ ℝ)
9 1re 10833 . . . . . . 7 1 ∈ ℝ
10 ifcl 4484 . . . . . . 7 (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ)
118, 9, 10sylancl 589 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ)
129a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 1 ∈ ℝ)
13 0lt1 11354 . . . . . . . 8 0 < 1
1413a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 0 < 1)
15 max1 12775 . . . . . . . 8 ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → 1 ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
169, 8, 15sylancr 590 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 1 ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
173, 12, 11, 14, 16ltletrd 10992 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 0 < if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
1811, 17elrpd 12625 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ+)
196, 18rpdivcld 12645 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ+)
20 cxploglim 25860 . . . 4 ((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))) ⇝𝑟 0)
2119, 20syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))) ⇝𝑟 0)
225, 21, 18rlimcxp 25856 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ⇝𝑟 0)
235, 21rlimmptrcl 15169 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))) ∈ ℂ)
2411adantr 484 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ)
2524recnd 10861 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ)
2623, 25cxpcld 25596 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℂ)
27 relogcl 25464 . . . . . 6 (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ)
2827adantl 485 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (log‘𝑛) ∈ ℝ)
2928recnd 10861 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (log‘𝑛) ∈ ℂ)
30 simpll 767 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℂ)
3129, 30cxpcld 25596 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛)↑𝑐𝐴) ∈ ℂ)
32 simpr 488 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ+)
33 rpre 12594 . . . . . 6 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
3433ad2antlr 727 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → 𝐵 ∈ ℝ)
3532, 34rpcxpcld 25620 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐𝐵) ∈ ℝ+)
3635rpcnd 12630 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐𝐵) ∈ ℂ)
3735rpne0d 12633 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐𝐵) ≠ 0)
3831, 36, 37divcld 11608 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) ∈ ℂ)
3938adantrr 717 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) ∈ ℂ)
4039abscld 15000 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ∈ ℝ)
41 rpre 12594 . . . . . . . . 9 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
4241ad2antrl 728 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝑛 ∈ ℝ)
439a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 1 ∈ ℝ)
441a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 3 ∈ ℝ)
45 1lt3 12003 . . . . . . . . . 10 1 < 3
4645a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 1 < 3)
47 simprr 773 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 3 ≤ 𝑛)
4843, 44, 42, 46, 47ltletrd 10992 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 1 < 𝑛)
4942, 48rplogcld 25517 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (log‘𝑛) ∈ ℝ+)
5032adantrr 717 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝑛 ∈ ℝ+)
5133ad2antlr 727 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝐵 ∈ ℝ)
5218adantr 484 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ+)
5351, 52rerpdivcld 12659 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ)
5450, 53rpcxpcld 25620 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ∈ ℝ+)
5549, 54rpdivcld 12645 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))) ∈ ℝ+)
5611adantr 484 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℝ)
5755, 56rpcxpcld 25620 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ+)
5857rpred 12628 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ)
5926adantrr 717 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℂ)
6059abscld 15000 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ∈ ℝ)
6131adantrr 717 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐𝐴) ∈ ℂ)
6261abscld 15000 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((log‘𝑛)↑𝑐𝐴)) ∈ ℝ)
6349, 56rpcxpcld 25620 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ+)
6463rpred 12628 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ∈ ℝ)
6535adantrr 717 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛𝑐𝐵) ∈ ℝ+)
66 simpll 767 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝐴 ∈ ℂ)
67 abscxp 25580 . . . . . . . 8 (((log‘𝑛) ∈ ℝ+𝐴 ∈ ℂ) → (abs‘((log‘𝑛)↑𝑐𝐴)) = ((log‘𝑛)↑𝑐(ℜ‘𝐴)))
6849, 66, 67syl2anc 587 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((log‘𝑛)↑𝑐𝐴)) = ((log‘𝑛)↑𝑐(ℜ‘𝐴)))
6966recld 14757 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (ℜ‘𝐴) ∈ ℝ)
70 max2 12777 . . . . . . . . 9 ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (ℜ‘𝐴) ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
719, 69, 70sylancr 590 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (ℜ‘𝐴) ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))
7227ad2antrl 728 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (log‘𝑛) ∈ ℝ)
73 loge 25475 . . . . . . . . . 10 (log‘e) = 1
74 ere 15650 . . . . . . . . . . . . 13 e ∈ ℝ
7574a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → e ∈ ℝ)
76 egt2lt3 15767 . . . . . . . . . . . . . 14 (2 < e ∧ e < 3)
7776simpri 489 . . . . . . . . . . . . 13 e < 3
7877a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → e < 3)
7975, 44, 42, 78, 47ltletrd 10992 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → e < 𝑛)
80 epr 15769 . . . . . . . . . . . 12 e ∈ ℝ+
81 logltb 25488 . . . . . . . . . . . 12 ((e ∈ ℝ+𝑛 ∈ ℝ+) → (e < 𝑛 ↔ (log‘e) < (log‘𝑛)))
8280, 50, 81sylancr 590 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (e < 𝑛 ↔ (log‘e) < (log‘𝑛)))
8379, 82mpbid 235 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (log‘e) < (log‘𝑛))
8473, 83eqbrtrrid 5089 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 1 < (log‘𝑛))
8572, 84, 69, 56cxpled 25608 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((ℜ‘𝐴) ≤ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ↔ ((log‘𝑛)↑𝑐(ℜ‘𝐴)) ≤ ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
8671, 85mpbid 235 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛)↑𝑐(ℜ‘𝐴)) ≤ ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
8768, 86eqbrtrd 5075 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((log‘𝑛)↑𝑐𝐴)) ≤ ((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
8862, 64, 65, 87lediv1dd 12686 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((abs‘((log‘𝑛)↑𝑐𝐴)) / (𝑛𝑐𝐵)) ≤ (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / (𝑛𝑐𝐵)))
8931, 36, 37absdivd 15019 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (abs‘(𝑛𝑐𝐵))))
9089adantrr 717 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (abs‘(𝑛𝑐𝐵))))
9165rprege0d 12635 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((𝑛𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝑛𝑐𝐵)))
92 absid 14860 . . . . . . . 8 (((𝑛𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝑛𝑐𝐵)) → (abs‘(𝑛𝑐𝐵)) = (𝑛𝑐𝐵))
9391, 92syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(𝑛𝑐𝐵)) = (𝑛𝑐𝐵))
9493oveq2d 7229 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((abs‘((log‘𝑛)↑𝑐𝐴)) / (abs‘(𝑛𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (𝑛𝑐𝐵)))
9590, 94eqtrd 2777 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) = ((abs‘((log‘𝑛)↑𝑐𝐴)) / (𝑛𝑐𝐵)))
9649rprege0d 12635 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((log‘𝑛) ∈ ℝ ∧ 0 ≤ (log‘𝑛)))
9711recnd 10861 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ)
9897adantr 484 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ)
99 divcxp 25575 . . . . . . 7 ((((log‘𝑛) ∈ ℝ ∧ 0 ≤ (log‘𝑛)) ∧ (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) ∈ ℝ+ ∧ if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ∈ ℂ) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
10096, 54, 98, 99syl3anc 1373 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
10150, 53, 98cxpmuld 25624 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛𝑐((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) · if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) = ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
10251recnd 10861 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → 𝐵 ∈ ℂ)
10352rpne0d 12633 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1) ≠ 0)
104102, 98, 103divcan1d 11609 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) · if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = 𝐵)
105104oveq2d 7229 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (𝑛𝑐((𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) · if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) = (𝑛𝑐𝐵))
106101, 105eqtr3d 2779 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = (𝑛𝑐𝐵))
107106oveq2d 7229 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / ((𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))) = (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / (𝑛𝑐𝐵)))
108100, 107eqtrd 2777 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) = (((log‘𝑛)↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) / (𝑛𝑐𝐵)))
10988, 95, 1083brtr4d 5085 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ≤ (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
11058leabsd 14978 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) ≤ (abs‘(((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
11140, 58, 60, 109, 110letrd 10989 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ≤ (abs‘(((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
11239subid1d 11178 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) − 0) = (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)))
113112fveq2d 6721 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) − 0)) = (abs‘(((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))))
11459subid1d 11178 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → ((((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) − 0) = (((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)))
115114fveq2d 6721 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) − 0)) = (abs‘(((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))
116111, 113, 1153brtr4d 5085 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ 3 ≤ 𝑛)) → (abs‘((((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵)) − 0)) ≤ (abs‘((((log‘𝑛) / (𝑛𝑐(𝐵 / if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1))))↑𝑐if(1 ≤ (ℜ‘𝐴), (ℜ‘𝐴), 1)) − 0)))
1172, 4, 22, 26, 38, 116rlimsqzlem 15212 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ (((log‘𝑛)↑𝑐𝐴) / (𝑛𝑐𝐵))) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  Vcvv 3408  ifcif 4439   class class class wbr 5053  cmpt 5135  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729  1c1 10730   · cmul 10734   < clt 10867  cle 10868  cmin 11062   / cdiv 11489  2c2 11885  3c3 11886  +crp 12586  cre 14660  abscabs 14797  𝑟 crli 15046  eceu 15624  logclog 25443  𝑐ccxp 25444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-e 15630  df-sin 15631  df-cos 15632  df-pi 15634  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763  df-dv 24764  df-log 25445  df-cxp 25446
This theorem is referenced by:  logexprlim  26106
  Copyright terms: Public domain W3C validator