MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimadd Structured version   Visualization version   GIF version

Theorem rlimadd 15091
Description: Limit of the sum of two converging functions. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
rlimadd.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
rlimadd.4 ((𝜑𝑥𝐴) → 𝐶𝑉)
rlimadd.5 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
rlimadd.6 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
Assertion
Ref Expression
rlimadd (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ⇝𝑟 (𝐷 + 𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝜑,𝑥   𝑥,𝐸
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem rlimadd
Dummy variables 𝑤 𝑣 𝑦 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimadd.3 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
2 rlimadd.5 . . 3 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
31, 2rlimmptrcl 15056 . 2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
4 rlimadd.4 . . 3 ((𝜑𝑥𝐴) → 𝐶𝑉)
5 rlimadd.6 . . 3 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
64, 5rlimmptrcl 15056 . 2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
73, 6addcld 10739 . 2 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℂ)
8 rlimcl 14951 . . . 4 ((𝑥𝐴𝐵) ⇝𝑟 𝐷𝐷 ∈ ℂ)
92, 8syl 17 . . 3 (𝜑𝐷 ∈ ℂ)
10 rlimcl 14951 . . . 4 ((𝑥𝐴𝐶) ⇝𝑟 𝐸𝐸 ∈ ℂ)
115, 10syl 17 . . 3 (𝜑𝐸 ∈ ℂ)
129, 11addcld 10739 . 2 (𝜑 → (𝐷 + 𝐸) ∈ ℂ)
13 simpr 488 . . 3 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
149adantr 484 . . 3 ((𝜑𝑦 ∈ ℝ+) → 𝐷 ∈ ℂ)
1511adantr 484 . . 3 ((𝜑𝑦 ∈ ℝ+) → 𝐸 ∈ ℂ)
16 addcn2 15042 . . 3 ((𝑦 ∈ ℝ+𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐷)) < 𝑧 ∧ (abs‘(𝑣𝐸)) < 𝑤) → (abs‘((𝑢 + 𝑣) − (𝐷 + 𝐸))) < 𝑦))
1713, 14, 15, 16syl3anc 1372 . 2 ((𝜑𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐷)) < 𝑧 ∧ (abs‘(𝑣𝐸)) < 𝑤) → (abs‘((𝑢 + 𝑣) − (𝐷 + 𝐸))) < 𝑦))
183, 6, 7, 12, 2, 5, 17rlimcn3 15038 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ⇝𝑟 (𝐷 + 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2113  wral 3053  wrex 3054   class class class wbr 5031  cmpt 5111  cfv 6340  (class class class)co 7171  cc 10614   + caddc 10619   < clt 10754  cmin 10949  +crp 12473  abscabs 14684  𝑟 crli 14933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-cnex 10672  ax-resscn 10673  ax-1cn 10674  ax-icn 10675  ax-addcl 10676  ax-addrcl 10677  ax-mulcl 10678  ax-mulrcl 10679  ax-mulcom 10680  ax-addass 10681  ax-mulass 10682  ax-distr 10683  ax-i2m1 10684  ax-1ne0 10685  ax-1rid 10686  ax-rnegex 10687  ax-rrecex 10688  ax-cnre 10689  ax-pre-lttri 10690  ax-pre-lttrn 10691  ax-pre-ltadd 10692  ax-pre-mulgt0 10693  ax-pre-sup 10694
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7128  df-ov 7174  df-oprab 7175  df-mpo 7176  df-om 7601  df-2nd 7716  df-wrecs 7977  df-recs 8038  df-rdg 8076  df-er 8321  df-pm 8441  df-en 8557  df-dom 8558  df-sdom 8559  df-sup 8980  df-pnf 10756  df-mnf 10757  df-xr 10758  df-ltxr 10759  df-le 10760  df-sub 10951  df-neg 10952  df-div 11377  df-nn 11718  df-2 11780  df-3 11781  df-n0 11978  df-z 12064  df-uz 12326  df-rp 12474  df-seq 13462  df-exp 13523  df-cj 14549  df-re 14550  df-im 14551  df-sqrt 14685  df-abs 14686  df-rlim 14937
This theorem is referenced by:  caucvgr  15126  fsumrlim  15260  logfacrlim  25960  logexprlim  25961  chpchtlim  26215  selberglem2  26282  signsplypnf  32099
  Copyright terms: Public domain W3C validator