MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimadd Structured version   Visualization version   GIF version

Theorem rlimadd 15625
Description: Limit of the sum of two converging functions. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
rlimadd.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
rlimadd.4 ((𝜑𝑥𝐴) → 𝐶𝑉)
rlimadd.5 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
rlimadd.6 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
Assertion
Ref Expression
rlimadd (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ⇝𝑟 (𝐷 + 𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝜑,𝑥   𝑥,𝐸
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem rlimadd
Dummy variables 𝑤 𝑣 𝑦 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimadd.3 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
2 rlimadd.5 . . 3 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
31, 2rlimmptrcl 15590 . 2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
4 rlimadd.4 . . 3 ((𝜑𝑥𝐴) → 𝐶𝑉)
5 rlimadd.6 . . 3 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
64, 5rlimmptrcl 15590 . 2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
73, 6addcld 11269 . 2 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℂ)
8 rlimcl 15485 . . . 4 ((𝑥𝐴𝐵) ⇝𝑟 𝐷𝐷 ∈ ℂ)
92, 8syl 17 . . 3 (𝜑𝐷 ∈ ℂ)
10 rlimcl 15485 . . . 4 ((𝑥𝐴𝐶) ⇝𝑟 𝐸𝐸 ∈ ℂ)
115, 10syl 17 . . 3 (𝜑𝐸 ∈ ℂ)
129, 11addcld 11269 . 2 (𝜑 → (𝐷 + 𝐸) ∈ ℂ)
13 simpr 483 . . 3 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
149adantr 479 . . 3 ((𝜑𝑦 ∈ ℝ+) → 𝐷 ∈ ℂ)
1511adantr 479 . . 3 ((𝜑𝑦 ∈ ℝ+) → 𝐸 ∈ ℂ)
16 addcn2 15576 . . 3 ((𝑦 ∈ ℝ+𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐷)) < 𝑧 ∧ (abs‘(𝑣𝐸)) < 𝑤) → (abs‘((𝑢 + 𝑣) − (𝐷 + 𝐸))) < 𝑦))
1713, 14, 15, 16syl3anc 1368 . 2 ((𝜑𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐷)) < 𝑧 ∧ (abs‘(𝑣𝐸)) < 𝑤) → (abs‘((𝑢 + 𝑣) − (𝐷 + 𝐸))) < 𝑦))
183, 6, 7, 12, 2, 5, 17rlimcn3 15572 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ⇝𝑟 (𝐷 + 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2098  wral 3057  wrex 3066   class class class wbr 5150  cmpt 5233  cfv 6551  (class class class)co 7424  cc 11142   + caddc 11147   < clt 11284  cmin 11480  +crp 13012  abscabs 15219  𝑟 crli 15467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-er 8729  df-pm 8852  df-en 8969  df-dom 8970  df-sdom 8971  df-sup 9471  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-n0 12509  df-z 12595  df-uz 12859  df-rp 13013  df-seq 14005  df-exp 14065  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-abs 15221  df-rlim 15471
This theorem is referenced by:  caucvgr  15660  fsumrlim  15795  logfacrlim  27175  logexprlim  27176  chpchtlim  27430  selberglem2  27497  signsplypnf  34187
  Copyright terms: Public domain W3C validator