![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimadd | Structured version Visualization version GIF version |
Description: Limit of the sum of two converging functions. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.) |
Ref | Expression |
---|---|
rlimadd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
rlimadd.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
rlimadd.5 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐷) |
rlimadd.6 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸) |
Ref | Expression |
---|---|
rlimadd | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ⇝𝑟 (𝐷 + 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimadd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
2 | rlimadd.5 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐷) | |
3 | 1, 2 | rlimmptrcl 15548 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
4 | rlimadd.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) | |
5 | rlimadd.6 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸) | |
6 | 4, 5 | rlimmptrcl 15548 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
7 | 3, 6 | addcld 11229 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 + 𝐶) ∈ ℂ) |
8 | rlimcl 15443 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐷 → 𝐷 ∈ ℂ) | |
9 | 2, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
10 | rlimcl 15443 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸 → 𝐸 ∈ ℂ) | |
11 | 5, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℂ) |
12 | 9, 11 | addcld 11229 | . 2 ⊢ (𝜑 → (𝐷 + 𝐸) ∈ ℂ) |
13 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+) | |
14 | 9 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝐷 ∈ ℂ) |
15 | 11 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝐸 ∈ ℂ) |
16 | addcn2 15534 | . . 3 ⊢ ((𝑦 ∈ ℝ+ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ) → ∃𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢 − 𝐷)) < 𝑧 ∧ (abs‘(𝑣 − 𝐸)) < 𝑤) → (abs‘((𝑢 + 𝑣) − (𝐷 + 𝐸))) < 𝑦)) | |
17 | 13, 14, 15, 16 | syl3anc 1371 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢 − 𝐷)) < 𝑧 ∧ (abs‘(𝑣 − 𝐸)) < 𝑤) → (abs‘((𝑢 + 𝑣) − (𝐷 + 𝐸))) < 𝑦)) |
18 | 3, 6, 7, 12, 2, 5, 17 | rlimcn3 15530 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ⇝𝑟 (𝐷 + 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 class class class wbr 5147 ↦ cmpt 5230 ‘cfv 6540 (class class class)co 7405 ℂcc 11104 + caddc 11109 < clt 11244 − cmin 11440 ℝ+crp 12970 abscabs 15177 ⇝𝑟 crli 15425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-rlim 15429 |
This theorem is referenced by: caucvgr 15618 fsumrlim 15753 logfacrlim 26716 logexprlim 26717 chpchtlim 26971 selberglem2 27038 signsplypnf 33549 |
Copyright terms: Public domain | W3C validator |