MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimmul Structured version   Visualization version   GIF version

Theorem rlimmul 14759
Description: Limit of the product of two converging functions. Proposition 12-2.1(c) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
rlimadd.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
rlimadd.4 ((𝜑𝑥𝐴) → 𝐶𝑉)
rlimadd.5 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
rlimadd.6 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
Assertion
Ref Expression
rlimmul (𝜑 → (𝑥𝐴 ↦ (𝐵 · 𝐶)) ⇝𝑟 (𝐷 · 𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝜑,𝑥   𝑥,𝐸
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem rlimmul
Dummy variables 𝑤 𝑣 𝑦 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimadd.3 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
2 rlimadd.5 . . 3 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
31, 2rlimmptrcl 14722 . 2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
4 rlimadd.4 . . 3 ((𝜑𝑥𝐴) → 𝐶𝑉)
5 rlimadd.6 . . 3 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
64, 5rlimmptrcl 14722 . 2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
7 rlimcl 14618 . . 3 ((𝑥𝐴𝐵) ⇝𝑟 𝐷𝐷 ∈ ℂ)
82, 7syl 17 . 2 (𝜑𝐷 ∈ ℂ)
9 rlimcl 14618 . . 3 ((𝑥𝐴𝐶) ⇝𝑟 𝐸𝐸 ∈ ℂ)
105, 9syl 17 . 2 (𝜑𝐸 ∈ ℂ)
11 ax-mulf 10339 . . 3 · :(ℂ × ℂ)⟶ℂ
1211a1i 11 . 2 (𝜑 → · :(ℂ × ℂ)⟶ℂ)
13 simpr 479 . . 3 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
148adantr 474 . . 3 ((𝜑𝑦 ∈ ℝ+) → 𝐷 ∈ ℂ)
1510adantr 474 . . 3 ((𝜑𝑦 ∈ ℝ+) → 𝐸 ∈ ℂ)
16 mulcn2 14710 . . 3 ((𝑦 ∈ ℝ+𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐷)) < 𝑧 ∧ (abs‘(𝑣𝐸)) < 𝑤) → (abs‘((𝑢 · 𝑣) − (𝐷 · 𝐸))) < 𝑦))
1713, 14, 15, 16syl3anc 1494 . 2 ((𝜑𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐷)) < 𝑧 ∧ (abs‘(𝑣𝐸)) < 𝑤) → (abs‘((𝑢 · 𝑣) − (𝐷 · 𝐸))) < 𝑦))
183, 6, 8, 10, 2, 5, 12, 17rlimcn2 14705 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 · 𝐶)) ⇝𝑟 (𝐷 · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wcel 2164  wral 3117  wrex 3118   class class class wbr 4875  cmpt 4954   × cxp 5344  wf 6123  cfv 6127  (class class class)co 6910  cc 10257   · cmul 10264   < clt 10398  cmin 10592  +crp 12119  abscabs 14358  𝑟 crli 14600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-mulf 10339
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-pm 8130  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-z 11712  df-uz 11976  df-rp 12120  df-seq 13103  df-exp 13162  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-rlim 14604
This theorem is referenced by:  rlimdiv  14760  caucvgr  14790  logexprlim  25370  dchrisum0lem1  25625  signsplypnf  31170
  Copyright terms: Public domain W3C validator