| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frmdup2 | Structured version Visualization version GIF version | ||
| Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| Ref | Expression |
|---|---|
| frmdup.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
| frmdup.b | ⊢ 𝐵 = (Base‘𝐺) |
| frmdup.e | ⊢ 𝐸 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) |
| frmdup.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| frmdup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
| frmdup.a | ⊢ (𝜑 → 𝐴:𝐼⟶𝐵) |
| frmdup2.u | ⊢ 𝑈 = (varFMnd‘𝐼) |
| frmdup2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| frmdup2 | ⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝐴‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdup.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
| 2 | frmdup2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐼) | |
| 3 | frmdup2.u | . . . . 5 ⊢ 𝑈 = (varFMnd‘𝐼) | |
| 4 | 3 | vrmdval 18767 | . . . 4 ⊢ ((𝐼 ∈ 𝑋 ∧ 𝑌 ∈ 𝐼) → (𝑈‘𝑌) = 〈“𝑌”〉) |
| 5 | 1, 2, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑈‘𝑌) = 〈“𝑌”〉) |
| 6 | 5 | fveq2d 6832 | . 2 ⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝐸‘〈“𝑌”〉)) |
| 7 | 2 | s1cld 14513 | . . . 4 ⊢ (𝜑 → 〈“𝑌”〉 ∈ Word 𝐼) |
| 8 | coeq2 5802 | . . . . . 6 ⊢ (𝑥 = 〈“𝑌”〉 → (𝐴 ∘ 𝑥) = (𝐴 ∘ 〈“𝑌”〉)) | |
| 9 | 8 | oveq2d 7368 | . . . . 5 ⊢ (𝑥 = 〈“𝑌”〉 → (𝐺 Σg (𝐴 ∘ 𝑥)) = (𝐺 Σg (𝐴 ∘ 〈“𝑌”〉))) |
| 10 | frmdup.e | . . . . 5 ⊢ 𝐸 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) | |
| 11 | ovex 7385 | . . . . 5 ⊢ (𝐺 Σg (𝐴 ∘ 𝑥)) ∈ V | |
| 12 | 9, 10, 11 | fvmpt3i 6940 | . . . 4 ⊢ (〈“𝑌”〉 ∈ Word 𝐼 → (𝐸‘〈“𝑌”〉) = (𝐺 Σg (𝐴 ∘ 〈“𝑌”〉))) |
| 13 | 7, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝐸‘〈“𝑌”〉) = (𝐺 Σg (𝐴 ∘ 〈“𝑌”〉))) |
| 14 | frmdup.a | . . . . 5 ⊢ (𝜑 → 𝐴:𝐼⟶𝐵) | |
| 15 | s1co 14742 | . . . . 5 ⊢ ((𝑌 ∈ 𝐼 ∧ 𝐴:𝐼⟶𝐵) → (𝐴 ∘ 〈“𝑌”〉) = 〈“(𝐴‘𝑌)”〉) | |
| 16 | 2, 14, 15 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴 ∘ 〈“𝑌”〉) = 〈“(𝐴‘𝑌)”〉) |
| 17 | 16 | oveq2d 7368 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐴 ∘ 〈“𝑌”〉)) = (𝐺 Σg 〈“(𝐴‘𝑌)”〉)) |
| 18 | 14, 2 | ffvelcdmd 7024 | . . . 4 ⊢ (𝜑 → (𝐴‘𝑌) ∈ 𝐵) |
| 19 | frmdup.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 20 | 19 | gsumws1 18748 | . . . 4 ⊢ ((𝐴‘𝑌) ∈ 𝐵 → (𝐺 Σg 〈“(𝐴‘𝑌)”〉) = (𝐴‘𝑌)) |
| 21 | 18, 20 | syl 17 | . . 3 ⊢ (𝜑 → (𝐺 Σg 〈“(𝐴‘𝑌)”〉) = (𝐴‘𝑌)) |
| 22 | 13, 17, 21 | 3eqtrd 2772 | . 2 ⊢ (𝜑 → (𝐸‘〈“𝑌”〉) = (𝐴‘𝑌)) |
| 23 | 6, 22 | eqtrd 2768 | 1 ⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝐴‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ↦ cmpt 5174 ∘ ccom 5623 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 Word cword 14422 〈“cs1 14505 Basecbs 17122 Σg cgsu 17346 Mndcmnd 18644 freeMndcfrmd 18757 varFMndcvrmd 18758 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-seq 13911 df-word 14423 df-s1 14506 df-0g 17347 df-gsum 17348 df-vrmd 18760 |
| This theorem is referenced by: frmdup3 18777 |
| Copyright terms: Public domain | W3C validator |