Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frmdup2 | Structured version Visualization version GIF version |
Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
frmdup.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
frmdup.b | ⊢ 𝐵 = (Base‘𝐺) |
frmdup.e | ⊢ 𝐸 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) |
frmdup.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
frmdup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
frmdup.a | ⊢ (𝜑 → 𝐴:𝐼⟶𝐵) |
frmdup2.u | ⊢ 𝑈 = (varFMnd‘𝐼) |
frmdup2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐼) |
Ref | Expression |
---|---|
frmdup2 | ⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝐴‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frmdup.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
2 | frmdup2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐼) | |
3 | frmdup2.u | . . . . 5 ⊢ 𝑈 = (varFMnd‘𝐼) | |
4 | 3 | vrmdval 18411 | . . . 4 ⊢ ((𝐼 ∈ 𝑋 ∧ 𝑌 ∈ 𝐼) → (𝑈‘𝑌) = 〈“𝑌”〉) |
5 | 1, 2, 4 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑈‘𝑌) = 〈“𝑌”〉) |
6 | 5 | fveq2d 6760 | . 2 ⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝐸‘〈“𝑌”〉)) |
7 | 2 | s1cld 14236 | . . . 4 ⊢ (𝜑 → 〈“𝑌”〉 ∈ Word 𝐼) |
8 | coeq2 5756 | . . . . . 6 ⊢ (𝑥 = 〈“𝑌”〉 → (𝐴 ∘ 𝑥) = (𝐴 ∘ 〈“𝑌”〉)) | |
9 | 8 | oveq2d 7271 | . . . . 5 ⊢ (𝑥 = 〈“𝑌”〉 → (𝐺 Σg (𝐴 ∘ 𝑥)) = (𝐺 Σg (𝐴 ∘ 〈“𝑌”〉))) |
10 | frmdup.e | . . . . 5 ⊢ 𝐸 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) | |
11 | ovex 7288 | . . . . 5 ⊢ (𝐺 Σg (𝐴 ∘ 𝑥)) ∈ V | |
12 | 9, 10, 11 | fvmpt3i 6862 | . . . 4 ⊢ (〈“𝑌”〉 ∈ Word 𝐼 → (𝐸‘〈“𝑌”〉) = (𝐺 Σg (𝐴 ∘ 〈“𝑌”〉))) |
13 | 7, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝐸‘〈“𝑌”〉) = (𝐺 Σg (𝐴 ∘ 〈“𝑌”〉))) |
14 | frmdup.a | . . . . 5 ⊢ (𝜑 → 𝐴:𝐼⟶𝐵) | |
15 | s1co 14474 | . . . . 5 ⊢ ((𝑌 ∈ 𝐼 ∧ 𝐴:𝐼⟶𝐵) → (𝐴 ∘ 〈“𝑌”〉) = 〈“(𝐴‘𝑌)”〉) | |
16 | 2, 14, 15 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐴 ∘ 〈“𝑌”〉) = 〈“(𝐴‘𝑌)”〉) |
17 | 16 | oveq2d 7271 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐴 ∘ 〈“𝑌”〉)) = (𝐺 Σg 〈“(𝐴‘𝑌)”〉)) |
18 | 14, 2 | ffvelrnd 6944 | . . . 4 ⊢ (𝜑 → (𝐴‘𝑌) ∈ 𝐵) |
19 | frmdup.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
20 | 19 | gsumws1 18391 | . . . 4 ⊢ ((𝐴‘𝑌) ∈ 𝐵 → (𝐺 Σg 〈“(𝐴‘𝑌)”〉) = (𝐴‘𝑌)) |
21 | 18, 20 | syl 17 | . . 3 ⊢ (𝜑 → (𝐺 Σg 〈“(𝐴‘𝑌)”〉) = (𝐴‘𝑌)) |
22 | 13, 17, 21 | 3eqtrd 2782 | . 2 ⊢ (𝜑 → (𝐸‘〈“𝑌”〉) = (𝐴‘𝑌)) |
23 | 6, 22 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝐴‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Word cword 14145 〈“cs1 14228 Basecbs 16840 Σg cgsu 17068 Mndcmnd 18300 freeMndcfrmd 18401 varFMndcvrmd 18402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-word 14146 df-s1 14229 df-0g 17069 df-gsum 17070 df-vrmd 18404 |
This theorem is referenced by: frmdup3 18421 |
Copyright terms: Public domain | W3C validator |