| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frmdup2 | Structured version Visualization version GIF version | ||
| Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| Ref | Expression |
|---|---|
| frmdup.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
| frmdup.b | ⊢ 𝐵 = (Base‘𝐺) |
| frmdup.e | ⊢ 𝐸 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) |
| frmdup.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| frmdup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
| frmdup.a | ⊢ (𝜑 → 𝐴:𝐼⟶𝐵) |
| frmdup2.u | ⊢ 𝑈 = (varFMnd‘𝐼) |
| frmdup2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| frmdup2 | ⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝐴‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdup.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
| 2 | frmdup2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐼) | |
| 3 | frmdup2.u | . . . . 5 ⊢ 𝑈 = (varFMnd‘𝐼) | |
| 4 | 3 | vrmdval 18790 | . . . 4 ⊢ ((𝐼 ∈ 𝑋 ∧ 𝑌 ∈ 𝐼) → (𝑈‘𝑌) = 〈“𝑌”〉) |
| 5 | 1, 2, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑈‘𝑌) = 〈“𝑌”〉) |
| 6 | 5 | fveq2d 6864 | . 2 ⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝐸‘〈“𝑌”〉)) |
| 7 | 2 | s1cld 14574 | . . . 4 ⊢ (𝜑 → 〈“𝑌”〉 ∈ Word 𝐼) |
| 8 | coeq2 5824 | . . . . . 6 ⊢ (𝑥 = 〈“𝑌”〉 → (𝐴 ∘ 𝑥) = (𝐴 ∘ 〈“𝑌”〉)) | |
| 9 | 8 | oveq2d 7405 | . . . . 5 ⊢ (𝑥 = 〈“𝑌”〉 → (𝐺 Σg (𝐴 ∘ 𝑥)) = (𝐺 Σg (𝐴 ∘ 〈“𝑌”〉))) |
| 10 | frmdup.e | . . . . 5 ⊢ 𝐸 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) | |
| 11 | ovex 7422 | . . . . 5 ⊢ (𝐺 Σg (𝐴 ∘ 𝑥)) ∈ V | |
| 12 | 9, 10, 11 | fvmpt3i 6975 | . . . 4 ⊢ (〈“𝑌”〉 ∈ Word 𝐼 → (𝐸‘〈“𝑌”〉) = (𝐺 Σg (𝐴 ∘ 〈“𝑌”〉))) |
| 13 | 7, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝐸‘〈“𝑌”〉) = (𝐺 Σg (𝐴 ∘ 〈“𝑌”〉))) |
| 14 | frmdup.a | . . . . 5 ⊢ (𝜑 → 𝐴:𝐼⟶𝐵) | |
| 15 | s1co 14805 | . . . . 5 ⊢ ((𝑌 ∈ 𝐼 ∧ 𝐴:𝐼⟶𝐵) → (𝐴 ∘ 〈“𝑌”〉) = 〈“(𝐴‘𝑌)”〉) | |
| 16 | 2, 14, 15 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴 ∘ 〈“𝑌”〉) = 〈“(𝐴‘𝑌)”〉) |
| 17 | 16 | oveq2d 7405 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐴 ∘ 〈“𝑌”〉)) = (𝐺 Σg 〈“(𝐴‘𝑌)”〉)) |
| 18 | 14, 2 | ffvelcdmd 7059 | . . . 4 ⊢ (𝜑 → (𝐴‘𝑌) ∈ 𝐵) |
| 19 | frmdup.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 20 | 19 | gsumws1 18771 | . . . 4 ⊢ ((𝐴‘𝑌) ∈ 𝐵 → (𝐺 Σg 〈“(𝐴‘𝑌)”〉) = (𝐴‘𝑌)) |
| 21 | 18, 20 | syl 17 | . . 3 ⊢ (𝜑 → (𝐺 Σg 〈“(𝐴‘𝑌)”〉) = (𝐴‘𝑌)) |
| 22 | 13, 17, 21 | 3eqtrd 2769 | . 2 ⊢ (𝜑 → (𝐸‘〈“𝑌”〉) = (𝐴‘𝑌)) |
| 23 | 6, 22 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝐴‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5190 ∘ ccom 5644 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 Word cword 14484 〈“cs1 14566 Basecbs 17185 Σg cgsu 17409 Mndcmnd 18667 freeMndcfrmd 18780 varFMndcvrmd 18781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-fzo 13622 df-seq 13973 df-word 14485 df-s1 14567 df-0g 17410 df-gsum 17411 df-vrmd 18783 |
| This theorem is referenced by: frmdup3 18800 |
| Copyright terms: Public domain | W3C validator |