| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frmdup2 | Structured version Visualization version GIF version | ||
| Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| Ref | Expression |
|---|---|
| frmdup.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
| frmdup.b | ⊢ 𝐵 = (Base‘𝐺) |
| frmdup.e | ⊢ 𝐸 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) |
| frmdup.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| frmdup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
| frmdup.a | ⊢ (𝜑 → 𝐴:𝐼⟶𝐵) |
| frmdup2.u | ⊢ 𝑈 = (varFMnd‘𝐼) |
| frmdup2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| frmdup2 | ⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝐴‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdup.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
| 2 | frmdup2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐼) | |
| 3 | frmdup2.u | . . . . 5 ⊢ 𝑈 = (varFMnd‘𝐼) | |
| 4 | 3 | vrmdval 18784 | . . . 4 ⊢ ((𝐼 ∈ 𝑋 ∧ 𝑌 ∈ 𝐼) → (𝑈‘𝑌) = 〈“𝑌”〉) |
| 5 | 1, 2, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑈‘𝑌) = 〈“𝑌”〉) |
| 6 | 5 | fveq2d 6862 | . 2 ⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝐸‘〈“𝑌”〉)) |
| 7 | 2 | s1cld 14568 | . . . 4 ⊢ (𝜑 → 〈“𝑌”〉 ∈ Word 𝐼) |
| 8 | coeq2 5822 | . . . . . 6 ⊢ (𝑥 = 〈“𝑌”〉 → (𝐴 ∘ 𝑥) = (𝐴 ∘ 〈“𝑌”〉)) | |
| 9 | 8 | oveq2d 7403 | . . . . 5 ⊢ (𝑥 = 〈“𝑌”〉 → (𝐺 Σg (𝐴 ∘ 𝑥)) = (𝐺 Σg (𝐴 ∘ 〈“𝑌”〉))) |
| 10 | frmdup.e | . . . . 5 ⊢ 𝐸 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) | |
| 11 | ovex 7420 | . . . . 5 ⊢ (𝐺 Σg (𝐴 ∘ 𝑥)) ∈ V | |
| 12 | 9, 10, 11 | fvmpt3i 6973 | . . . 4 ⊢ (〈“𝑌”〉 ∈ Word 𝐼 → (𝐸‘〈“𝑌”〉) = (𝐺 Σg (𝐴 ∘ 〈“𝑌”〉))) |
| 13 | 7, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝐸‘〈“𝑌”〉) = (𝐺 Σg (𝐴 ∘ 〈“𝑌”〉))) |
| 14 | frmdup.a | . . . . 5 ⊢ (𝜑 → 𝐴:𝐼⟶𝐵) | |
| 15 | s1co 14799 | . . . . 5 ⊢ ((𝑌 ∈ 𝐼 ∧ 𝐴:𝐼⟶𝐵) → (𝐴 ∘ 〈“𝑌”〉) = 〈“(𝐴‘𝑌)”〉) | |
| 16 | 2, 14, 15 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴 ∘ 〈“𝑌”〉) = 〈“(𝐴‘𝑌)”〉) |
| 17 | 16 | oveq2d 7403 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐴 ∘ 〈“𝑌”〉)) = (𝐺 Σg 〈“(𝐴‘𝑌)”〉)) |
| 18 | 14, 2 | ffvelcdmd 7057 | . . . 4 ⊢ (𝜑 → (𝐴‘𝑌) ∈ 𝐵) |
| 19 | frmdup.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 20 | 19 | gsumws1 18765 | . . . 4 ⊢ ((𝐴‘𝑌) ∈ 𝐵 → (𝐺 Σg 〈“(𝐴‘𝑌)”〉) = (𝐴‘𝑌)) |
| 21 | 18, 20 | syl 17 | . . 3 ⊢ (𝜑 → (𝐺 Σg 〈“(𝐴‘𝑌)”〉) = (𝐴‘𝑌)) |
| 22 | 13, 17, 21 | 3eqtrd 2768 | . 2 ⊢ (𝜑 → (𝐸‘〈“𝑌”〉) = (𝐴‘𝑌)) |
| 23 | 6, 22 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝐴‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5188 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Word cword 14478 〈“cs1 14560 Basecbs 17179 Σg cgsu 17403 Mndcmnd 18661 freeMndcfrmd 18774 varFMndcvrmd 18775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-word 14479 df-s1 14561 df-0g 17404 df-gsum 17405 df-vrmd 18777 |
| This theorem is referenced by: frmdup3 18794 |
| Copyright terms: Public domain | W3C validator |