Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frmdup2 | Structured version Visualization version GIF version |
Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
frmdup.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
frmdup.b | ⊢ 𝐵 = (Base‘𝐺) |
frmdup.e | ⊢ 𝐸 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) |
frmdup.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
frmdup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
frmdup.a | ⊢ (𝜑 → 𝐴:𝐼⟶𝐵) |
frmdup2.u | ⊢ 𝑈 = (varFMnd‘𝐼) |
frmdup2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐼) |
Ref | Expression |
---|---|
frmdup2 | ⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝐴‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frmdup.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
2 | frmdup2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐼) | |
3 | frmdup2.u | . . . . 5 ⊢ 𝑈 = (varFMnd‘𝐼) | |
4 | 3 | vrmdval 18592 | . . . 4 ⊢ ((𝐼 ∈ 𝑋 ∧ 𝑌 ∈ 𝐼) → (𝑈‘𝑌) = 〈“𝑌”〉) |
5 | 1, 2, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑈‘𝑌) = 〈“𝑌”〉) |
6 | 5 | fveq2d 6829 | . 2 ⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝐸‘〈“𝑌”〉)) |
7 | 2 | s1cld 14407 | . . . 4 ⊢ (𝜑 → 〈“𝑌”〉 ∈ Word 𝐼) |
8 | coeq2 5800 | . . . . . 6 ⊢ (𝑥 = 〈“𝑌”〉 → (𝐴 ∘ 𝑥) = (𝐴 ∘ 〈“𝑌”〉)) | |
9 | 8 | oveq2d 7353 | . . . . 5 ⊢ (𝑥 = 〈“𝑌”〉 → (𝐺 Σg (𝐴 ∘ 𝑥)) = (𝐺 Σg (𝐴 ∘ 〈“𝑌”〉))) |
10 | frmdup.e | . . . . 5 ⊢ 𝐸 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) | |
11 | ovex 7370 | . . . . 5 ⊢ (𝐺 Σg (𝐴 ∘ 𝑥)) ∈ V | |
12 | 9, 10, 11 | fvmpt3i 6936 | . . . 4 ⊢ (〈“𝑌”〉 ∈ Word 𝐼 → (𝐸‘〈“𝑌”〉) = (𝐺 Σg (𝐴 ∘ 〈“𝑌”〉))) |
13 | 7, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝐸‘〈“𝑌”〉) = (𝐺 Σg (𝐴 ∘ 〈“𝑌”〉))) |
14 | frmdup.a | . . . . 5 ⊢ (𝜑 → 𝐴:𝐼⟶𝐵) | |
15 | s1co 14645 | . . . . 5 ⊢ ((𝑌 ∈ 𝐼 ∧ 𝐴:𝐼⟶𝐵) → (𝐴 ∘ 〈“𝑌”〉) = 〈“(𝐴‘𝑌)”〉) | |
16 | 2, 14, 15 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴 ∘ 〈“𝑌”〉) = 〈“(𝐴‘𝑌)”〉) |
17 | 16 | oveq2d 7353 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐴 ∘ 〈“𝑌”〉)) = (𝐺 Σg 〈“(𝐴‘𝑌)”〉)) |
18 | 14, 2 | ffvelcdmd 7018 | . . . 4 ⊢ (𝜑 → (𝐴‘𝑌) ∈ 𝐵) |
19 | frmdup.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
20 | 19 | gsumws1 18573 | . . . 4 ⊢ ((𝐴‘𝑌) ∈ 𝐵 → (𝐺 Σg 〈“(𝐴‘𝑌)”〉) = (𝐴‘𝑌)) |
21 | 18, 20 | syl 17 | . . 3 ⊢ (𝜑 → (𝐺 Σg 〈“(𝐴‘𝑌)”〉) = (𝐴‘𝑌)) |
22 | 13, 17, 21 | 3eqtrd 2780 | . 2 ⊢ (𝜑 → (𝐸‘〈“𝑌”〉) = (𝐴‘𝑌)) |
23 | 6, 22 | eqtrd 2776 | 1 ⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝐴‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ↦ cmpt 5175 ∘ ccom 5624 ⟶wf 6475 ‘cfv 6479 (class class class)co 7337 Word cword 14317 〈“cs1 14399 Basecbs 17009 Σg cgsu 17248 Mndcmnd 18482 freeMndcfrmd 18582 varFMndcvrmd 18583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-n0 12335 df-z 12421 df-uz 12684 df-fz 13341 df-fzo 13484 df-seq 13823 df-word 14318 df-s1 14400 df-0g 17249 df-gsum 17250 df-vrmd 18585 |
This theorem is referenced by: frmdup3 18602 |
Copyright terms: Public domain | W3C validator |