![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scutcut | Structured version Visualization version GIF version |
Description: Cut properties of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
scutcut | ⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scutval 27683 | . . 3 ⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (℩𝑥 ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))) | |
2 | conway 27682 | . . . 4 ⊢ (𝐴 <<s 𝐵 → ∃!𝑥 ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) | |
3 | riotacl 7378 | . . . 4 ⊢ (∃!𝑥 ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → (℩𝑥 ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 <<s 𝐵 → (℩𝑥 ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) |
5 | 1, 4 | eqeltrd 2827 | . 2 ⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) |
6 | sneq 4633 | . . . . . 6 ⊢ (𝑦 = (𝐴 |s 𝐵) → {𝑦} = {(𝐴 |s 𝐵)}) | |
7 | 6 | breq2d 5153 | . . . . 5 ⊢ (𝑦 = (𝐴 |s 𝐵) → (𝐴 <<s {𝑦} ↔ 𝐴 <<s {(𝐴 |s 𝐵)})) |
8 | 6 | breq1d 5151 | . . . . 5 ⊢ (𝑦 = (𝐴 |s 𝐵) → ({𝑦} <<s 𝐵 ↔ {(𝐴 |s 𝐵)} <<s 𝐵)) |
9 | 7, 8 | anbi12d 630 | . . . 4 ⊢ (𝑦 = (𝐴 |s 𝐵) → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))) |
10 | 9 | elrab 3678 | . . 3 ⊢ ((𝐴 |s 𝐵) ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ↔ ((𝐴 |s 𝐵) ∈ No ∧ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))) |
11 | 3anass 1092 | . . 3 ⊢ (((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵) ↔ ((𝐴 |s 𝐵) ∈ No ∧ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))) | |
12 | 10, 11 | bitr4i 278 | . 2 ⊢ ((𝐴 |s 𝐵) ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ↔ ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
13 | 5, 12 | sylib 217 | 1 ⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∃!wreu 3368 {crab 3426 {csn 4623 ∩ cint 4943 class class class wbr 5141 “ cima 5672 ‘cfv 6536 ℩crio 7359 (class class class)co 7404 No csur 27523 bday cbday 27525 <<s csslt 27663 |s cscut 27665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-1o 8464 df-2o 8465 df-no 27526 df-slt 27527 df-bday 27528 df-sslt 27664 df-scut 27666 |
This theorem is referenced by: scutcl 27685 scutbday 27687 scutun12 27693 slerec 27702 sltrec 27703 cofcut2 27792 cofcutr 27794 cofcutrtime 27797 addsproplem3 27838 addsuniflem 27868 negsproplem3 27892 negsunif 27917 mulsproplem10 27975 ssltmul1 27997 ssltmul2 27998 mulsuniflem 27999 precsexlem11 28065 |
Copyright terms: Public domain | W3C validator |