Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scutcut Structured version   Visualization version   GIF version

Theorem scutcut 33380
Description: Cut properties of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
scutcut (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))

Proof of Theorem scutcut
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scutval 33379 . . 3 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
2 conway 33378 . . . 4 (𝐴 <<s 𝐵 → ∃!𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
3 riotacl 7114 . . . 4 (∃!𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
42, 3syl 17 . . 3 (𝐴 <<s 𝐵 → (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
51, 4eqeltrd 2893 . 2 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
6 sneq 4538 . . . . . 6 (𝑦 = (𝐴 |s 𝐵) → {𝑦} = {(𝐴 |s 𝐵)})
76breq2d 5045 . . . . 5 (𝑦 = (𝐴 |s 𝐵) → (𝐴 <<s {𝑦} ↔ 𝐴 <<s {(𝐴 |s 𝐵)}))
86breq1d 5043 . . . . 5 (𝑦 = (𝐴 |s 𝐵) → ({𝑦} <<s 𝐵 ↔ {(𝐴 |s 𝐵)} <<s 𝐵))
97, 8anbi12d 633 . . . 4 (𝑦 = (𝐴 |s 𝐵) → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)))
109elrab 3631 . . 3 ((𝐴 |s 𝐵) ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ↔ ((𝐴 |s 𝐵) ∈ No ∧ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)))
11 3anass 1092 . . 3 (((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵) ↔ ((𝐴 |s 𝐵) ∈ No ∧ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)))
1210, 11bitr4i 281 . 2 ((𝐴 |s 𝐵) ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ↔ ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
135, 12sylib 221 1 (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  ∃!wreu 3111  {crab 3113  {csn 4528   cint 4841   class class class wbr 5033  cima 5526  cfv 6328  crio 7096  (class class class)co 7139   No csur 33261   bday cbday 33263   <<s csslt 33364   |s cscut 33366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-ord 6166  df-on 6167  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1o 8089  df-2o 8090  df-no 33264  df-slt 33265  df-bday 33266  df-sslt 33365  df-scut 33367
This theorem is referenced by:  scutbday  33381  scutun12  33385  scutf  33387  slerec  33391  sltrec  33392  madeval2  33404
  Copyright terms: Public domain W3C validator