MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutcut Structured version   Visualization version   GIF version

Theorem scutcut 27855
Description: Cut properties of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
scutcut (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))

Proof of Theorem scutcut
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scutval 27854 . . 3 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
2 conway 27853 . . . 4 (𝐴 <<s 𝐵 → ∃!𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
3 riotacl 7419 . . . 4 (∃!𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
42, 3syl 17 . . 3 (𝐴 <<s 𝐵 → (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
51, 4eqeltrd 2838 . 2 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
6 sneq 4658 . . . . . 6 (𝑦 = (𝐴 |s 𝐵) → {𝑦} = {(𝐴 |s 𝐵)})
76breq2d 5181 . . . . 5 (𝑦 = (𝐴 |s 𝐵) → (𝐴 <<s {𝑦} ↔ 𝐴 <<s {(𝐴 |s 𝐵)}))
86breq1d 5179 . . . . 5 (𝑦 = (𝐴 |s 𝐵) → ({𝑦} <<s 𝐵 ↔ {(𝐴 |s 𝐵)} <<s 𝐵))
97, 8anbi12d 631 . . . 4 (𝑦 = (𝐴 |s 𝐵) → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)))
109elrab 3703 . . 3 ((𝐴 |s 𝐵) ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ↔ ((𝐴 |s 𝐵) ∈ No ∧ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)))
11 3anass 1095 . . 3 (((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵) ↔ ((𝐴 |s 𝐵) ∈ No ∧ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)))
1210, 11bitr4i 278 . 2 ((𝐴 |s 𝐵) ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ↔ ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
135, 12sylib 218 1 (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2103  ∃!wreu 3381  {crab 3438  {csn 4648   cint 4972   class class class wbr 5169  cima 5702  cfv 6572  crio 7400  (class class class)co 7445   No csur 27693   bday cbday 27695   <<s csslt 27834   |s cscut 27836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4973  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-ord 6397  df-on 6398  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-1o 8518  df-2o 8519  df-no 27696  df-slt 27697  df-bday 27698  df-sslt 27835  df-scut 27837
This theorem is referenced by:  scutcl  27856  scutbday  27858  scutun12  27864  slerec  27873  sltrec  27874  cofcut2  27965  cofcutr  27967  cofcutrtime  27970  cutmax  27977  cutmin  27978  addsproplem3  28013  addsuniflem  28043  negsproplem3  28071  negsunif  28096  mulsproplem10  28160  ssltmul1  28182  ssltmul2  28183  mulsuniflem  28184  precsexlem11  28250
  Copyright terms: Public domain W3C validator