Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > scutcut | Structured version Visualization version GIF version |
Description: Cut properties of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
scutcut | ⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scutval 33994 | . . 3 ⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (℩𝑥 ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))) | |
2 | conway 33993 | . . . 4 ⊢ (𝐴 <<s 𝐵 → ∃!𝑥 ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) | |
3 | riotacl 7250 | . . . 4 ⊢ (∃!𝑥 ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → (℩𝑥 ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 <<s 𝐵 → (℩𝑥 ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) |
5 | 1, 4 | eqeltrd 2839 | . 2 ⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) |
6 | sneq 4571 | . . . . . 6 ⊢ (𝑦 = (𝐴 |s 𝐵) → {𝑦} = {(𝐴 |s 𝐵)}) | |
7 | 6 | breq2d 5086 | . . . . 5 ⊢ (𝑦 = (𝐴 |s 𝐵) → (𝐴 <<s {𝑦} ↔ 𝐴 <<s {(𝐴 |s 𝐵)})) |
8 | 6 | breq1d 5084 | . . . . 5 ⊢ (𝑦 = (𝐴 |s 𝐵) → ({𝑦} <<s 𝐵 ↔ {(𝐴 |s 𝐵)} <<s 𝐵)) |
9 | 7, 8 | anbi12d 631 | . . . 4 ⊢ (𝑦 = (𝐴 |s 𝐵) → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))) |
10 | 9 | elrab 3624 | . . 3 ⊢ ((𝐴 |s 𝐵) ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ↔ ((𝐴 |s 𝐵) ∈ No ∧ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))) |
11 | 3anass 1094 | . . 3 ⊢ (((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵) ↔ ((𝐴 |s 𝐵) ∈ No ∧ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))) | |
12 | 10, 11 | bitr4i 277 | . 2 ⊢ ((𝐴 |s 𝐵) ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ↔ ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
13 | 5, 12 | sylib 217 | 1 ⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∃!wreu 3066 {crab 3068 {csn 4561 ∩ cint 4879 class class class wbr 5074 “ cima 5592 ‘cfv 6433 ℩crio 7231 (class class class)co 7275 No csur 33843 bday cbday 33845 <<s csslt 33975 |s cscut 33977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1o 8297 df-2o 8298 df-no 33846 df-slt 33847 df-bday 33848 df-sslt 33976 df-scut 33978 |
This theorem is referenced by: scutcl 33996 scutbday 33998 scutun12 34004 slerec 34013 sltrec 34014 cofcut2 34091 cofcutr 34092 cofcutrtime 34093 |
Copyright terms: Public domain | W3C validator |