| Step | Hyp | Ref
| Expression |
| 1 | | scutval 27764 |
. . 3
⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (℩𝑦 ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday
‘𝑦) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)}))) |
| 2 | 1 | eqcomd 2741 |
. 2
⊢ (𝐴 <<s 𝐵 → (℩𝑦 ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday
‘𝑦) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)})) = (𝐴 |s 𝐵)) |
| 3 | | scutcut 27765 |
. . . 4
⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No
∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
| 4 | | sneq 4611 |
. . . . . . . 8
⊢ (𝑥 = (𝐴 |s 𝐵) → {𝑥} = {(𝐴 |s 𝐵)}) |
| 5 | 4 | breq2d 5131 |
. . . . . . 7
⊢ (𝑥 = (𝐴 |s 𝐵) → (𝐴 <<s {𝑥} ↔ 𝐴 <<s {(𝐴 |s 𝐵)})) |
| 6 | 4 | breq1d 5129 |
. . . . . . 7
⊢ (𝑥 = (𝐴 |s 𝐵) → ({𝑥} <<s 𝐵 ↔ {(𝐴 |s 𝐵)} <<s 𝐵)) |
| 7 | 5, 6 | anbi12d 632 |
. . . . . 6
⊢ (𝑥 = (𝐴 |s 𝐵) → ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) ↔ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))) |
| 8 | 7 | elrab 3671 |
. . . . 5
⊢ ((𝐴 |s 𝐵) ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ↔ ((𝐴 |s 𝐵) ∈ No
∧ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))) |
| 9 | | 3anass 1094 |
. . . . 5
⊢ (((𝐴 |s 𝐵) ∈ No
∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵) ↔ ((𝐴 |s 𝐵) ∈ No
∧ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))) |
| 10 | 8, 9 | bitr4i 278 |
. . . 4
⊢ ((𝐴 |s 𝐵) ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ↔ ((𝐴 |s 𝐵) ∈ No
∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
| 11 | 3, 10 | sylibr 234 |
. . 3
⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) |
| 12 | | conway 27763 |
. . 3
⊢ (𝐴 <<s 𝐵 → ∃!𝑦 ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday
‘𝑦) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)})) |
| 13 | | fveqeq2 6885 |
. . . 4
⊢ (𝑦 = (𝐴 |s 𝐵) → (( bday
‘𝑦) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ( bday
‘(𝐴 |s 𝐵)) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)}))) |
| 14 | 13 | riota2 7387 |
. . 3
⊢ (((𝐴 |s 𝐵) ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ∧ ∃!𝑦 ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday
‘𝑦) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)})) → (( bday
‘(𝐴 |s 𝐵)) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ (℩𝑦 ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday
‘𝑦) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)})) = (𝐴 |s 𝐵))) |
| 15 | 11, 12, 14 | syl2anc 584 |
. 2
⊢ (𝐴 <<s 𝐵 → (( bday
‘(𝐴 |s 𝐵)) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ (℩𝑦 ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday
‘𝑦) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)})) = (𝐴 |s 𝐵))) |
| 16 | 2, 15 | mpbird 257 |
1
⊢ (𝐴 <<s 𝐵 → ( bday
‘(𝐴 |s 𝐵)) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)})) |