MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutbday Structured version   Visualization version   GIF version

Theorem scutbday 27849
Description: The birthday of the surreal cut is equal to the minimum birthday in the gap. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
scutbday (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem scutbday
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 scutval 27845 . . 3 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})))
21eqcomd 2743 . 2 (𝐴 <<s 𝐵 → (𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})) = (𝐴 |s 𝐵))
3 scutcut 27846 . . . 4 (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
4 sneq 4636 . . . . . . . 8 (𝑥 = (𝐴 |s 𝐵) → {𝑥} = {(𝐴 |s 𝐵)})
54breq2d 5155 . . . . . . 7 (𝑥 = (𝐴 |s 𝐵) → (𝐴 <<s {𝑥} ↔ 𝐴 <<s {(𝐴 |s 𝐵)}))
64breq1d 5153 . . . . . . 7 (𝑥 = (𝐴 |s 𝐵) → ({𝑥} <<s 𝐵 ↔ {(𝐴 |s 𝐵)} <<s 𝐵))
75, 6anbi12d 632 . . . . . 6 (𝑥 = (𝐴 |s 𝐵) → ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) ↔ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)))
87elrab 3692 . . . . 5 ((𝐴 |s 𝐵) ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ↔ ((𝐴 |s 𝐵) ∈ No ∧ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)))
9 3anass 1095 . . . . 5 (((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵) ↔ ((𝐴 |s 𝐵) ∈ No ∧ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)))
108, 9bitr4i 278 . . . 4 ((𝐴 |s 𝐵) ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ↔ ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
113, 10sylibr 234 . . 3 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})
12 conway 27844 . . 3 (𝐴 <<s 𝐵 → ∃!𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))
13 fveqeq2 6915 . . . 4 (𝑦 = (𝐴 |s 𝐵) → (( bday 𝑦) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})))
1413riota2 7413 . . 3 (((𝐴 |s 𝐵) ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ∧ ∃!𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})) → (( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ (𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})) = (𝐴 |s 𝐵)))
1511, 12, 14syl2anc 584 . 2 (𝐴 <<s 𝐵 → (( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ (𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})) = (𝐴 |s 𝐵)))
162, 15mpbird 257 1 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  ∃!wreu 3378  {crab 3436  {csn 4626   cint 4946   class class class wbr 5143  cima 5688  cfv 6561  crio 7387  (class class class)co 7431   No csur 27684   bday cbday 27686   <<s csslt 27825   |s cscut 27827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1o 8506  df-2o 8507  df-no 27687  df-slt 27688  df-bday 27689  df-sslt 27826  df-scut 27828
This theorem is referenced by:  scutun12  27855  scutbdaybnd  27860  scutbdaybnd2  27861  scutbdaylt  27863  bday0s  27873  bday1s  27876  cofcut1  27954  cofcutr  27958
  Copyright terms: Public domain W3C validator