MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutbday Structured version   Visualization version   GIF version

Theorem scutbday 27768
Description: The birthday of the surreal cut is equal to the minimum birthday in the gap. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
scutbday (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem scutbday
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 scutval 27764 . . 3 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})))
21eqcomd 2741 . 2 (𝐴 <<s 𝐵 → (𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})) = (𝐴 |s 𝐵))
3 scutcut 27765 . . . 4 (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
4 sneq 4611 . . . . . . . 8 (𝑥 = (𝐴 |s 𝐵) → {𝑥} = {(𝐴 |s 𝐵)})
54breq2d 5131 . . . . . . 7 (𝑥 = (𝐴 |s 𝐵) → (𝐴 <<s {𝑥} ↔ 𝐴 <<s {(𝐴 |s 𝐵)}))
64breq1d 5129 . . . . . . 7 (𝑥 = (𝐴 |s 𝐵) → ({𝑥} <<s 𝐵 ↔ {(𝐴 |s 𝐵)} <<s 𝐵))
75, 6anbi12d 632 . . . . . 6 (𝑥 = (𝐴 |s 𝐵) → ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) ↔ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)))
87elrab 3671 . . . . 5 ((𝐴 |s 𝐵) ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ↔ ((𝐴 |s 𝐵) ∈ No ∧ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)))
9 3anass 1094 . . . . 5 (((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵) ↔ ((𝐴 |s 𝐵) ∈ No ∧ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)))
108, 9bitr4i 278 . . . 4 ((𝐴 |s 𝐵) ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ↔ ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
113, 10sylibr 234 . . 3 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})
12 conway 27763 . . 3 (𝐴 <<s 𝐵 → ∃!𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))
13 fveqeq2 6885 . . . 4 (𝑦 = (𝐴 |s 𝐵) → (( bday 𝑦) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})))
1413riota2 7387 . . 3 (((𝐴 |s 𝐵) ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ∧ ∃!𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})) → (( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ (𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})) = (𝐴 |s 𝐵)))
1511, 12, 14syl2anc 584 . 2 (𝐴 <<s 𝐵 → (( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ (𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})) = (𝐴 |s 𝐵)))
162, 15mpbird 257 1 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  ∃!wreu 3357  {crab 3415  {csn 4601   cint 4922   class class class wbr 5119  cima 5657  cfv 6531  crio 7361  (class class class)co 7405   No csur 27603   bday cbday 27605   <<s csslt 27744   |s cscut 27746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1o 8480  df-2o 8481  df-no 27606  df-slt 27607  df-bday 27608  df-sslt 27745  df-scut 27747
This theorem is referenced by:  scutun12  27774  scutbdaybnd  27779  scutbdaybnd2  27780  scutbdaylt  27782  bday0s  27792  bday1s  27795  cofcut1  27880  cofcutr  27884  onsiso  28221  bdayn0p1  28310
  Copyright terms: Public domain W3C validator