MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutbday Structured version   Visualization version   GIF version

Theorem scutbday 27723
Description: The birthday of the surreal cut is equal to the minimum birthday in the gap. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
scutbday (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem scutbday
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 scutval 27719 . . 3 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})))
21eqcomd 2736 . 2 (𝐴 <<s 𝐵 → (𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})) = (𝐴 |s 𝐵))
3 scutcut 27720 . . . 4 (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
4 sneq 4602 . . . . . . . 8 (𝑥 = (𝐴 |s 𝐵) → {𝑥} = {(𝐴 |s 𝐵)})
54breq2d 5122 . . . . . . 7 (𝑥 = (𝐴 |s 𝐵) → (𝐴 <<s {𝑥} ↔ 𝐴 <<s {(𝐴 |s 𝐵)}))
64breq1d 5120 . . . . . . 7 (𝑥 = (𝐴 |s 𝐵) → ({𝑥} <<s 𝐵 ↔ {(𝐴 |s 𝐵)} <<s 𝐵))
75, 6anbi12d 632 . . . . . 6 (𝑥 = (𝐴 |s 𝐵) → ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) ↔ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)))
87elrab 3662 . . . . 5 ((𝐴 |s 𝐵) ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ↔ ((𝐴 |s 𝐵) ∈ No ∧ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)))
9 3anass 1094 . . . . 5 (((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵) ↔ ((𝐴 |s 𝐵) ∈ No ∧ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)))
108, 9bitr4i 278 . . . 4 ((𝐴 |s 𝐵) ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ↔ ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
113, 10sylibr 234 . . 3 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})
12 conway 27718 . . 3 (𝐴 <<s 𝐵 → ∃!𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))
13 fveqeq2 6870 . . . 4 (𝑦 = (𝐴 |s 𝐵) → (( bday 𝑦) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})))
1413riota2 7372 . . 3 (((𝐴 |s 𝐵) ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ∧ ∃!𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})) → (( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ (𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})) = (𝐴 |s 𝐵)))
1511, 12, 14syl2anc 584 . 2 (𝐴 <<s 𝐵 → (( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ (𝑦 ∈ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday 𝑦) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})) = (𝐴 |s 𝐵)))
162, 15mpbird 257 1 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑥 No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  ∃!wreu 3354  {crab 3408  {csn 4592   cint 4913   class class class wbr 5110  cima 5644  cfv 6514  crio 7346  (class class class)co 7390   No csur 27558   bday cbday 27560   <<s csslt 27699   |s cscut 27701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563  df-sslt 27700  df-scut 27702
This theorem is referenced by:  scutun12  27729  scutbdaybnd  27734  scutbdaybnd2  27735  scutbdaylt  27737  bday0s  27747  bday1s  27750  cofcut1  27835  cofcutr  27839  onsiso  28176  bdayn0p1  28265
  Copyright terms: Public domain W3C validator