Step | Hyp | Ref
| Expression |
1 | | scutval 33921 |
. . 3
⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (℩𝑦 ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday
‘𝑦) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)}))) |
2 | 1 | eqcomd 2744 |
. 2
⊢ (𝐴 <<s 𝐵 → (℩𝑦 ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday
‘𝑦) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)})) = (𝐴 |s 𝐵)) |
3 | | scutcut 33922 |
. . . 4
⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No
∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
4 | | sneq 4568 |
. . . . . . . 8
⊢ (𝑥 = (𝐴 |s 𝐵) → {𝑥} = {(𝐴 |s 𝐵)}) |
5 | 4 | breq2d 5082 |
. . . . . . 7
⊢ (𝑥 = (𝐴 |s 𝐵) → (𝐴 <<s {𝑥} ↔ 𝐴 <<s {(𝐴 |s 𝐵)})) |
6 | 4 | breq1d 5080 |
. . . . . . 7
⊢ (𝑥 = (𝐴 |s 𝐵) → ({𝑥} <<s 𝐵 ↔ {(𝐴 |s 𝐵)} <<s 𝐵)) |
7 | 5, 6 | anbi12d 630 |
. . . . . 6
⊢ (𝑥 = (𝐴 |s 𝐵) → ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) ↔ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))) |
8 | 7 | elrab 3617 |
. . . . 5
⊢ ((𝐴 |s 𝐵) ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ↔ ((𝐴 |s 𝐵) ∈ No
∧ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))) |
9 | | 3anass 1093 |
. . . . 5
⊢ (((𝐴 |s 𝐵) ∈ No
∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵) ↔ ((𝐴 |s 𝐵) ∈ No
∧ (𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))) |
10 | 8, 9 | bitr4i 277 |
. . . 4
⊢ ((𝐴 |s 𝐵) ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ↔ ((𝐴 |s 𝐵) ∈ No
∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
11 | 3, 10 | sylibr 233 |
. . 3
⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)}) |
12 | | conway 33920 |
. . 3
⊢ (𝐴 <<s 𝐵 → ∃!𝑦 ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday
‘𝑦) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)})) |
13 | | fveqeq2 6765 |
. . . 4
⊢ (𝑦 = (𝐴 |s 𝐵) → (( bday
‘𝑦) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ ( bday
‘(𝐴 |s 𝐵)) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)}))) |
14 | 13 | riota2 7238 |
. . 3
⊢ (((𝐴 |s 𝐵) ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ∧ ∃!𝑦 ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday
‘𝑦) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)})) → (( bday
‘(𝐴 |s 𝐵)) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ (℩𝑦 ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday
‘𝑦) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)})) = (𝐴 |s 𝐵))) |
15 | 11, 12, 14 | syl2anc 583 |
. 2
⊢ (𝐴 <<s 𝐵 → (( bday
‘(𝐴 |s 𝐵)) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)}) ↔ (℩𝑦 ∈ {𝑥 ∈ No
∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)} ( bday
‘𝑦) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)})) = (𝐴 |s 𝐵))) |
16 | 2, 15 | mpbird 256 |
1
⊢ (𝐴 <<s 𝐵 → ( bday
‘(𝐴 |s 𝐵)) = ∩ ( bday “ {𝑥 ∈
No ∣ (𝐴
<<s {𝑥} ∧ {𝑥} <<s 𝐵)})) |