MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvbssntr Structured version   Visualization version   GIF version

Theorem dvbssntr 24969
Description: The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
dvcl.s (𝜑𝑆 ⊆ ℂ)
dvcl.f (𝜑𝐹:𝐴⟶ℂ)
dvcl.a (𝜑𝐴𝑆)
dvbssntr.j 𝐽 = (𝐾t 𝑆)
dvbssntr.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
dvbssntr (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘𝐽)‘𝐴))

Proof of Theorem dvbssntr
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcl.s . . . 4 (𝜑𝑆 ⊆ ℂ)
2 dvcl.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
3 dvcl.a . . . 4 (𝜑𝐴𝑆)
4 dvbssntr.j . . . . 5 𝐽 = (𝐾t 𝑆)
5 dvbssntr.k . . . . 5 𝐾 = (TopOpen‘ℂfld)
64, 5dvfval 24966 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → ((𝑆 D 𝐹) = 𝑥 ∈ ((int‘𝐽)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝐽)‘𝐴) × ℂ)))
71, 2, 3, 6syl3anc 1369 . . 3 (𝜑 → ((𝑆 D 𝐹) = 𝑥 ∈ ((int‘𝐽)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝐽)‘𝐴) × ℂ)))
8 dmss 5800 . . 3 ((𝑆 D 𝐹) ⊆ (((int‘𝐽)‘𝐴) × ℂ) → dom (𝑆 D 𝐹) ⊆ dom (((int‘𝐽)‘𝐴) × ℂ))
97, 8simpl2im 503 . 2 (𝜑 → dom (𝑆 D 𝐹) ⊆ dom (((int‘𝐽)‘𝐴) × ℂ))
10 dmxpss 6063 . 2 dom (((int‘𝐽)‘𝐴) × ℂ) ⊆ ((int‘𝐽)‘𝐴)
119, 10sstrdi 3929 1 (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘𝐽)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  cdif 3880  wss 3883  {csn 4558   ciun 4921  cmpt 5153   × cxp 5578  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cmin 11135   / cdiv 11562  t crest 17048  TopOpenctopn 17049  fldccnfld 20510  intcnt 22076   lim climc 24931   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cnp 22287  df-xms 23381  df-ms 23382  df-limc 24935  df-dv 24936
This theorem is referenced by:  dvbss  24970  dvnres  25000  dvcmulf  25014  dvcjbr  25018  dvmptcmul  25033  dvcnvre  25088  ftc1cn  25112  taylthlem1  25437  taylthlem2  25438  ulmdvlem3  25466  ftc1cnnc  35776
  Copyright terms: Public domain W3C validator