Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvbssntr | Structured version Visualization version GIF version |
Description: The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
dvcl.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
dvcl.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
dvcl.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
dvbssntr.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
dvbssntr.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
dvbssntr | ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘𝐽)‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvcl.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
2 | dvcl.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
3 | dvcl.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
4 | dvbssntr.j | . . . . 5 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
5 | dvbssntr.k | . . . . 5 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
6 | 4, 5 | dvfval 24596 | . . . 4 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ((𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝐽)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝐽)‘𝐴) × ℂ))) |
7 | 1, 2, 3, 6 | syl3anc 1368 | . . 3 ⊢ (𝜑 → ((𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝐽)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝐽)‘𝐴) × ℂ))) |
8 | dmss 5742 | . . 3 ⊢ ((𝑆 D 𝐹) ⊆ (((int‘𝐽)‘𝐴) × ℂ) → dom (𝑆 D 𝐹) ⊆ dom (((int‘𝐽)‘𝐴) × ℂ)) | |
9 | 7, 8 | simpl2im 507 | . 2 ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ dom (((int‘𝐽)‘𝐴) × ℂ)) |
10 | dmxpss 6000 | . 2 ⊢ dom (((int‘𝐽)‘𝐴) × ℂ) ⊆ ((int‘𝐽)‘𝐴) | |
11 | 9, 10 | sstrdi 3904 | 1 ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘𝐽)‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∖ cdif 3855 ⊆ wss 3858 {csn 4522 ∪ ciun 4883 ↦ cmpt 5112 × cxp 5522 dom cdm 5524 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 ℂcc 10573 − cmin 10908 / cdiv 11335 ↾t crest 16752 TopOpenctopn 16753 ℂfldccnfld 20166 intcnt 21717 limℂ climc 24561 D cdv 24562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-pm 8419 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-fi 8908 df-sup 8939 df-inf 8940 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-q 12389 df-rp 12431 df-xneg 12548 df-xadd 12549 df-xmul 12550 df-fz 12940 df-seq 13419 df-exp 13480 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-plusg 16636 df-mulr 16637 df-starv 16638 df-tset 16642 df-ple 16643 df-ds 16645 df-unif 16646 df-rest 16754 df-topn 16755 df-topgen 16775 df-psmet 20158 df-xmet 20159 df-met 20160 df-bl 20161 df-mopn 20162 df-cnfld 20167 df-top 21594 df-topon 21611 df-topsp 21633 df-bases 21646 df-cnp 21928 df-xms 23022 df-ms 23023 df-limc 24565 df-dv 24566 |
This theorem is referenced by: dvbss 24600 dvnres 24630 dvcmulf 24644 dvcjbr 24648 dvmptcmul 24663 dvcnvre 24718 ftc1cn 24742 taylthlem1 25067 taylthlem2 25068 ulmdvlem3 25096 ftc1cnnc 35409 |
Copyright terms: Public domain | W3C validator |