MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvbssntr Structured version   Visualization version   GIF version

Theorem dvbssntr 24185
Description: The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
dvcl.s (𝜑𝑆 ⊆ ℂ)
dvcl.f (𝜑𝐹:𝐴⟶ℂ)
dvcl.a (𝜑𝐴𝑆)
dvbssntr.j 𝐽 = (𝐾t 𝑆)
dvbssntr.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
dvbssntr (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘𝐽)‘𝐴))

Proof of Theorem dvbssntr
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcl.s . . . 4 (𝜑𝑆 ⊆ ℂ)
2 dvcl.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
3 dvcl.a . . . 4 (𝜑𝐴𝑆)
4 dvbssntr.j . . . . 5 𝐽 = (𝐾t 𝑆)
5 dvbssntr.k . . . . 5 𝐾 = (TopOpen‘ℂfld)
64, 5dvfval 24182 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → ((𝑆 D 𝐹) = 𝑥 ∈ ((int‘𝐽)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝐽)‘𝐴) × ℂ)))
71, 2, 3, 6syl3anc 1364 . . 3 (𝜑 → ((𝑆 D 𝐹) = 𝑥 ∈ ((int‘𝐽)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝐽)‘𝐴) × ℂ)))
8 dmss 5664 . . 3 ((𝑆 D 𝐹) ⊆ (((int‘𝐽)‘𝐴) × ℂ) → dom (𝑆 D 𝐹) ⊆ dom (((int‘𝐽)‘𝐴) × ℂ))
97, 8simpl2im 504 . 2 (𝜑 → dom (𝑆 D 𝐹) ⊆ dom (((int‘𝐽)‘𝐴) × ℂ))
10 dmxpss 5911 . 2 dom (((int‘𝐽)‘𝐴) × ℂ) ⊆ ((int‘𝐽)‘𝐴)
119, 10syl6ss 3907 1 (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘𝐽)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1525  cdif 3862  wss 3865  {csn 4478   ciun 4831  cmpt 5047   × cxp 5448  dom cdm 5450  wf 6228  cfv 6232  (class class class)co 7023  cc 10388  cmin 10723   / cdiv 11151  t crest 16527  TopOpenctopn 16528  fldccnfld 20231  intcnt 21313   lim climc 24147   D cdv 24148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-map 8265  df-pm 8266  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-fi 8728  df-sup 8759  df-inf 8760  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-7 11559  df-8 11560  df-9 11561  df-n0 11752  df-z 11836  df-dec 11953  df-uz 12098  df-q 12202  df-rp 12244  df-xneg 12361  df-xadd 12362  df-xmul 12363  df-fz 12747  df-seq 13224  df-exp 13284  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-struct 16318  df-ndx 16319  df-slot 16320  df-base 16322  df-plusg 16411  df-mulr 16412  df-starv 16413  df-tset 16417  df-ple 16418  df-ds 16420  df-unif 16421  df-rest 16529  df-topn 16530  df-topgen 16550  df-psmet 20223  df-xmet 20224  df-met 20225  df-bl 20226  df-mopn 20227  df-cnfld 20232  df-top 21190  df-topon 21207  df-topsp 21229  df-bases 21242  df-cnp 21524  df-xms 22617  df-ms 22618  df-limc 24151  df-dv 24152
This theorem is referenced by:  dvbss  24186  dvnres  24215  dvcmulf  24229  dvcjbr  24233  dvmptcmul  24248  dvcnvre  24303  ftc1cn  24327  taylthlem1  24648  taylthlem2  24649  ulmdvlem3  24677  ftc1cnnc  34518
  Copyright terms: Public domain W3C validator