Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lcmfunsn | Structured version Visualization version GIF version |
Description: The lcm function for a union of a set of integer and a singleton. (Contributed by AV, 26-Aug-2020.) |
Ref | Expression |
---|---|
lcmfunsn | ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ∧ 𝑁 ∈ ℤ) → (lcm‘(𝑌 ∪ {𝑁})) = ((lcm‘𝑌) lcm 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmfunsnlem 16374 | . . 3 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → (lcm‘𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm‘𝑌) lcm 𝑛))) | |
2 | sneq 4574 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → {𝑛} = {𝑁}) | |
3 | 2 | uneq2d 4100 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (𝑌 ∪ {𝑛}) = (𝑌 ∪ {𝑁})) |
4 | 3 | fveq2d 6796 | . . . . 5 ⊢ (𝑛 = 𝑁 → (lcm‘(𝑌 ∪ {𝑛})) = (lcm‘(𝑌 ∪ {𝑁}))) |
5 | oveq2 7303 | . . . . 5 ⊢ (𝑛 = 𝑁 → ((lcm‘𝑌) lcm 𝑛) = ((lcm‘𝑌) lcm 𝑁)) | |
6 | 4, 5 | eqeq12d 2749 | . . . 4 ⊢ (𝑛 = 𝑁 → ((lcm‘(𝑌 ∪ {𝑛})) = ((lcm‘𝑌) lcm 𝑛) ↔ (lcm‘(𝑌 ∪ {𝑁})) = ((lcm‘𝑌) lcm 𝑁))) |
7 | 6 | rspccv 3560 | . . 3 ⊢ (∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm‘𝑌) lcm 𝑛) → (𝑁 ∈ ℤ → (lcm‘(𝑌 ∪ {𝑁})) = ((lcm‘𝑌) lcm 𝑁))) |
8 | 1, 7 | simpl2im 503 | . 2 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (𝑁 ∈ ℤ → (lcm‘(𝑌 ∪ {𝑁})) = ((lcm‘𝑌) lcm 𝑁))) |
9 | 8 | 3impia 1115 | 1 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ∧ 𝑁 ∈ ℤ) → (lcm‘(𝑌 ∪ {𝑁})) = ((lcm‘𝑌) lcm 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1537 ∈ wcel 2101 ∀wral 3059 ∪ cun 3887 ⊆ wss 3889 {csn 4564 class class class wbr 5077 ‘cfv 6447 (class class class)co 7295 Fincfn 8753 ℤcz 12347 ∥ cdvds 15991 lcm clcm 16321 lcmclcmf 16322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-inf2 9427 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-pre-sup 10977 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-se 5547 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-isom 6456 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-sup 9229 df-inf 9230 df-oi 9297 df-card 9725 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-3 12065 df-n0 12262 df-z 12348 df-uz 12611 df-rp 12759 df-fz 13268 df-fzo 13411 df-fl 13540 df-mod 13618 df-seq 13750 df-exp 13811 df-hash 14073 df-cj 14838 df-re 14839 df-im 14840 df-sqrt 14974 df-abs 14975 df-clim 15225 df-prod 15644 df-dvds 15992 df-gcd 16230 df-lcm 16323 df-lcmf 16324 |
This theorem is referenced by: lcmfun 16378 lcmfunnnd 40046 |
Copyright terms: Public domain | W3C validator |