MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfunsn Structured version   Visualization version   GIF version

Theorem lcmfunsn 16337
Description: The lcm function for a union of a set of integer and a singleton. (Contributed by AV, 26-Aug-2020.)
Assertion
Ref Expression
lcmfunsn ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ∧ 𝑁 ∈ ℤ) → (lcm‘(𝑌 ∪ {𝑁})) = ((lcm𝑌) lcm 𝑁))

Proof of Theorem lcmfunsn
Dummy variables 𝑛 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcmfunsnlem 16334 . . 3 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛)))
2 sneq 4572 . . . . . . 7 (𝑛 = 𝑁 → {𝑛} = {𝑁})
32uneq2d 4097 . . . . . 6 (𝑛 = 𝑁 → (𝑌 ∪ {𝑛}) = (𝑌 ∪ {𝑁}))
43fveq2d 6771 . . . . 5 (𝑛 = 𝑁 → (lcm‘(𝑌 ∪ {𝑛})) = (lcm‘(𝑌 ∪ {𝑁})))
5 oveq2 7276 . . . . 5 (𝑛 = 𝑁 → ((lcm𝑌) lcm 𝑛) = ((lcm𝑌) lcm 𝑁))
64, 5eqeq12d 2754 . . . 4 (𝑛 = 𝑁 → ((lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛) ↔ (lcm‘(𝑌 ∪ {𝑁})) = ((lcm𝑌) lcm 𝑁)))
76rspccv 3557 . . 3 (∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛) → (𝑁 ∈ ℤ → (lcm‘(𝑌 ∪ {𝑁})) = ((lcm𝑌) lcm 𝑁)))
81, 7simpl2im 504 . 2 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (𝑁 ∈ ℤ → (lcm‘(𝑌 ∪ {𝑁})) = ((lcm𝑌) lcm 𝑁)))
983impia 1116 1 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ∧ 𝑁 ∈ ℤ) → (lcm‘(𝑌 ∪ {𝑁})) = ((lcm𝑌) lcm 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cun 3885  wss 3887  {csn 4562   class class class wbr 5074  cfv 6427  (class class class)co 7268  Fincfn 8721  cz 12307  cdvds 15951   lcm clcm 16281  lcmclcmf 16282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-inf2 9387  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936  ax-pre-sup 10937
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-se 5541  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-isom 6436  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7704  df-1st 7821  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-1o 8285  df-er 8486  df-en 8722  df-dom 8723  df-sdom 8724  df-fin 8725  df-sup 9189  df-inf 9190  df-oi 9257  df-card 9685  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-div 11621  df-nn 11962  df-2 12024  df-3 12025  df-n0 12222  df-z 12308  df-uz 12571  df-rp 12719  df-fz 13228  df-fzo 13371  df-fl 13500  df-mod 13578  df-seq 13710  df-exp 13771  df-hash 14033  df-cj 14798  df-re 14799  df-im 14800  df-sqrt 14934  df-abs 14935  df-clim 15185  df-prod 15604  df-dvds 15952  df-gcd 16190  df-lcm 16283  df-lcmf 16284
This theorem is referenced by:  lcmfun  16338  lcmfunnnd  40006
  Copyright terms: Public domain W3C validator