Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lcmfunsn | Structured version Visualization version GIF version |
Description: The lcm function for a union of a set of integer and a singleton. (Contributed by AV, 26-Aug-2020.) |
Ref | Expression |
---|---|
lcmfunsn | ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ∧ 𝑁 ∈ ℤ) → (lcm‘(𝑌 ∪ {𝑁})) = ((lcm‘𝑌) lcm 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmfunsnlem 16334 | . . 3 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → (lcm‘𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm‘𝑌) lcm 𝑛))) | |
2 | sneq 4572 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → {𝑛} = {𝑁}) | |
3 | 2 | uneq2d 4097 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (𝑌 ∪ {𝑛}) = (𝑌 ∪ {𝑁})) |
4 | 3 | fveq2d 6771 | . . . . 5 ⊢ (𝑛 = 𝑁 → (lcm‘(𝑌 ∪ {𝑛})) = (lcm‘(𝑌 ∪ {𝑁}))) |
5 | oveq2 7276 | . . . . 5 ⊢ (𝑛 = 𝑁 → ((lcm‘𝑌) lcm 𝑛) = ((lcm‘𝑌) lcm 𝑁)) | |
6 | 4, 5 | eqeq12d 2754 | . . . 4 ⊢ (𝑛 = 𝑁 → ((lcm‘(𝑌 ∪ {𝑛})) = ((lcm‘𝑌) lcm 𝑛) ↔ (lcm‘(𝑌 ∪ {𝑁})) = ((lcm‘𝑌) lcm 𝑁))) |
7 | 6 | rspccv 3557 | . . 3 ⊢ (∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm‘𝑌) lcm 𝑛) → (𝑁 ∈ ℤ → (lcm‘(𝑌 ∪ {𝑁})) = ((lcm‘𝑌) lcm 𝑁))) |
8 | 1, 7 | simpl2im 504 | . 2 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (𝑁 ∈ ℤ → (lcm‘(𝑌 ∪ {𝑁})) = ((lcm‘𝑌) lcm 𝑁))) |
9 | 8 | 3impia 1116 | 1 ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ∧ 𝑁 ∈ ℤ) → (lcm‘(𝑌 ∪ {𝑁})) = ((lcm‘𝑌) lcm 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∪ cun 3885 ⊆ wss 3887 {csn 4562 class class class wbr 5074 ‘cfv 6427 (class class class)co 7268 Fincfn 8721 ℤcz 12307 ∥ cdvds 15951 lcm clcm 16281 lcmclcmf 16282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-inf2 9387 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 ax-pre-sup 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-se 5541 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-isom 6436 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-1st 7821 df-2nd 7822 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-1o 8285 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-fin 8725 df-sup 9189 df-inf 9190 df-oi 9257 df-card 9685 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-div 11621 df-nn 11962 df-2 12024 df-3 12025 df-n0 12222 df-z 12308 df-uz 12571 df-rp 12719 df-fz 13228 df-fzo 13371 df-fl 13500 df-mod 13578 df-seq 13710 df-exp 13771 df-hash 14033 df-cj 14798 df-re 14799 df-im 14800 df-sqrt 14934 df-abs 14935 df-clim 15185 df-prod 15604 df-dvds 15952 df-gcd 16190 df-lcm 16283 df-lcmf 16284 |
This theorem is referenced by: lcmfun 16338 lcmfunnnd 40006 |
Copyright terms: Public domain | W3C validator |