Step | Hyp | Ref
| Expression |
1 | | efgredlem.2 |
. . . . . 6
β’ (π β π΄ β dom π) |
2 | | efgval.w |
. . . . . . . 8
β’ π = ( I βWord (πΌ Γ
2o)) |
3 | | efgval.r |
. . . . . . . 8
β’ βΌ = (
~FG βπΌ) |
4 | | efgval2.m |
. . . . . . . 8
β’ π = (π¦ β πΌ, π§ β 2o β¦ β¨π¦, (1o β π§)β©) |
5 | | efgval2.t |
. . . . . . . 8
β’ π = (π£ β π β¦ (π β (0...(β―βπ£)), π€ β (πΌ Γ 2o) β¦ (π£ splice β¨π, π, β¨βπ€(πβπ€)ββ©β©))) |
6 | | efgred.d |
. . . . . . . 8
β’ π· = (π β βͺ
π₯ β π ran (πβπ₯)) |
7 | | efgred.s |
. . . . . . . 8
β’ π = (π β {π‘ β (Word π β {β
}) β£ ((π‘β0) β π· β§ βπ β
(1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} β¦ (πβ((β―βπ) β 1))) |
8 | 2, 3, 4, 5, 6, 7 | efgsdm 19639 |
. . . . . . 7
β’ (π΄ β dom π β (π΄ β (Word π β {β
}) β§ (π΄β0) β π· β§ βπ β (1..^(β―βπ΄))(π΄βπ) β ran (πβ(π΄β(π β 1))))) |
9 | 8 | simp1bi 1143 |
. . . . . 6
β’ (π΄ β dom π β π΄ β (Word π β {β
})) |
10 | 1, 9 | syl 17 |
. . . . 5
β’ (π β π΄ β (Word π β {β
})) |
11 | 10 | eldifad 3959 |
. . . 4
β’ (π β π΄ β Word π) |
12 | | wrdf 14473 |
. . . 4
β’ (π΄ β Word π β π΄:(0..^(β―βπ΄))βΆπ) |
13 | 11, 12 | syl 17 |
. . 3
β’ (π β π΄:(0..^(β―βπ΄))βΆπ) |
14 | | fzossfz 13655 |
. . . . 5
β’
(0..^((β―βπ΄) β 1)) β
(0...((β―βπ΄)
β 1)) |
15 | | lencl 14487 |
. . . . . . . 8
β’ (π΄ β Word π β (β―βπ΄) β
β0) |
16 | 11, 15 | syl 17 |
. . . . . . 7
β’ (π β (β―βπ΄) β
β0) |
17 | 16 | nn0zd 12588 |
. . . . . 6
β’ (π β (β―βπ΄) β
β€) |
18 | | fzoval 13637 |
. . . . . 6
β’
((β―βπ΄)
β β€ β (0..^(β―βπ΄)) = (0...((β―βπ΄) β 1))) |
19 | 17, 18 | syl 17 |
. . . . 5
β’ (π β (0..^(β―βπ΄)) = (0...((β―βπ΄) β 1))) |
20 | 14, 19 | sseqtrrid 4034 |
. . . 4
β’ (π β (0..^((β―βπ΄) β 1)) β
(0..^(β―βπ΄))) |
21 | | efgredlemb.k |
. . . . 5
β’ πΎ = (((β―βπ΄) β 1) β
1) |
22 | | efgredlem.1 |
. . . . . . . 8
β’ (π β βπ β dom πβπ β dom π((β―β(πβπ)) < (β―β(πβπ΄)) β ((πβπ) = (πβπ) β (πβ0) = (πβ0)))) |
23 | | efgredlem.3 |
. . . . . . . 8
β’ (π β π΅ β dom π) |
24 | | efgredlem.4 |
. . . . . . . 8
β’ (π β (πβπ΄) = (πβπ΅)) |
25 | | efgredlem.5 |
. . . . . . . 8
β’ (π β Β¬ (π΄β0) = (π΅β0)) |
26 | 2, 3, 4, 5, 6, 7, 22, 1, 23, 24, 25 | efgredlema 19649 |
. . . . . . 7
β’ (π β (((β―βπ΄) β 1) β β
β§ ((β―βπ΅)
β 1) β β)) |
27 | 26 | simpld 493 |
. . . . . 6
β’ (π β ((β―βπ΄) β 1) β
β) |
28 | | fzo0end 13728 |
. . . . . 6
β’
(((β―βπ΄)
β 1) β β β (((β―βπ΄) β 1) β 1) β
(0..^((β―βπ΄)
β 1))) |
29 | 27, 28 | syl 17 |
. . . . 5
β’ (π β (((β―βπ΄) β 1) β 1) β
(0..^((β―βπ΄)
β 1))) |
30 | 21, 29 | eqeltrid 2835 |
. . . 4
β’ (π β πΎ β (0..^((β―βπ΄) β 1))) |
31 | 20, 30 | sseldd 3982 |
. . 3
β’ (π β πΎ β (0..^(β―βπ΄))) |
32 | 13, 31 | ffvelcdmd 7086 |
. 2
β’ (π β (π΄βπΎ) β π) |
33 | 2, 3, 4, 5, 6, 7 | efgsdm 19639 |
. . . . . . 7
β’ (π΅ β dom π β (π΅ β (Word π β {β
}) β§ (π΅β0) β π· β§ βπ β (1..^(β―βπ΅))(π΅βπ) β ran (πβ(π΅β(π β 1))))) |
34 | 33 | simp1bi 1143 |
. . . . . 6
β’ (π΅ β dom π β π΅ β (Word π β {β
})) |
35 | 23, 34 | syl 17 |
. . . . 5
β’ (π β π΅ β (Word π β {β
})) |
36 | 35 | eldifad 3959 |
. . . 4
β’ (π β π΅ β Word π) |
37 | | wrdf 14473 |
. . . 4
β’ (π΅ β Word π β π΅:(0..^(β―βπ΅))βΆπ) |
38 | 36, 37 | syl 17 |
. . 3
β’ (π β π΅:(0..^(β―βπ΅))βΆπ) |
39 | | fzossfz 13655 |
. . . . 5
β’
(0..^((β―βπ΅) β 1)) β
(0...((β―βπ΅)
β 1)) |
40 | | lencl 14487 |
. . . . . . . 8
β’ (π΅ β Word π β (β―βπ΅) β
β0) |
41 | 36, 40 | syl 17 |
. . . . . . 7
β’ (π β (β―βπ΅) β
β0) |
42 | 41 | nn0zd 12588 |
. . . . . 6
β’ (π β (β―βπ΅) β
β€) |
43 | | fzoval 13637 |
. . . . . 6
β’
((β―βπ΅)
β β€ β (0..^(β―βπ΅)) = (0...((β―βπ΅) β 1))) |
44 | 42, 43 | syl 17 |
. . . . 5
β’ (π β (0..^(β―βπ΅)) = (0...((β―βπ΅) β 1))) |
45 | 39, 44 | sseqtrrid 4034 |
. . . 4
β’ (π β (0..^((β―βπ΅) β 1)) β
(0..^(β―βπ΅))) |
46 | | efgredlemb.l |
. . . . 5
β’ πΏ = (((β―βπ΅) β 1) β
1) |
47 | | fzo0end 13728 |
. . . . . 6
β’
(((β―βπ΅)
β 1) β β β (((β―βπ΅) β 1) β 1) β
(0..^((β―βπ΅)
β 1))) |
48 | 26, 47 | simpl2im 502 |
. . . . 5
β’ (π β (((β―βπ΅) β 1) β 1) β
(0..^((β―βπ΅)
β 1))) |
49 | 46, 48 | eqeltrid 2835 |
. . . 4
β’ (π β πΏ β (0..^((β―βπ΅) β 1))) |
50 | 45, 49 | sseldd 3982 |
. . 3
β’ (π β πΏ β (0..^(β―βπ΅))) |
51 | 38, 50 | ffvelcdmd 7086 |
. 2
β’ (π β (π΅βπΏ) β π) |
52 | 32, 51 | jca 510 |
1
β’ (π β ((π΄βπΎ) β π β§ (π΅βπΏ) β π)) |