MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlemf Structured version   Visualization version   GIF version

Theorem efgredlemf 19759
Description: Lemma for efgredleme 19761. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgredlem.1 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
efgredlem.2 (𝜑𝐴 ∈ dom 𝑆)
efgredlem.3 (𝜑𝐵 ∈ dom 𝑆)
efgredlem.4 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
efgredlem.5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
efgredlemb.k 𝐾 = (((♯‘𝐴) − 1) − 1)
efgredlemb.l 𝐿 = (((♯‘𝐵) − 1) − 1)
Assertion
Ref Expression
efgredlemf (𝜑 → ((𝐴𝐾) ∈ 𝑊 ∧ (𝐵𝐿) ∈ 𝑊))
Distinct variable groups:   𝑎,𝑏,𝐴   𝑦,𝑎,𝑧,𝑏   𝐿,𝑎,𝑏   𝐾,𝑎,𝑏   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧   𝑚,𝑎,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑏   𝑘,𝑎,𝑇,𝑏,𝑚,𝑡,𝑥   𝑊,𝑎,𝑏   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑎,𝑏,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏   𝑆,𝑎,𝑏   𝐼,𝑎,𝑏,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑚,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛,𝑎,𝑏)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝐾(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgredlemf
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 efgredlem.2 . . . . . 6 (𝜑𝐴 ∈ dom 𝑆)
2 efgval.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2o))
3 efgval.r . . . . . . . 8 = ( ~FG𝐼)
4 efgval2.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
5 efgval2.t . . . . . . . 8 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
6 efgred.d . . . . . . . 8 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
7 efgred.s . . . . . . . 8 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
82, 3, 4, 5, 6, 7efgsdm 19748 . . . . . . 7 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐴))(𝐴𝑖) ∈ ran (𝑇‘(𝐴‘(𝑖 − 1)))))
98simp1bi 1146 . . . . . 6 (𝐴 ∈ dom 𝑆𝐴 ∈ (Word 𝑊 ∖ {∅}))
101, 9syl 17 . . . . 5 (𝜑𝐴 ∈ (Word 𝑊 ∖ {∅}))
1110eldifad 3963 . . . 4 (𝜑𝐴 ∈ Word 𝑊)
12 wrdf 14557 . . . 4 (𝐴 ∈ Word 𝑊𝐴:(0..^(♯‘𝐴))⟶𝑊)
1311, 12syl 17 . . 3 (𝜑𝐴:(0..^(♯‘𝐴))⟶𝑊)
14 fzossfz 13718 . . . . 5 (0..^((♯‘𝐴) − 1)) ⊆ (0...((♯‘𝐴) − 1))
15 lencl 14571 . . . . . . . 8 (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℕ0)
1611, 15syl 17 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ ℕ0)
1716nn0zd 12639 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℤ)
18 fzoval 13700 . . . . . 6 ((♯‘𝐴) ∈ ℤ → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
1917, 18syl 17 . . . . 5 (𝜑 → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
2014, 19sseqtrrid 4027 . . . 4 (𝜑 → (0..^((♯‘𝐴) − 1)) ⊆ (0..^(♯‘𝐴)))
21 efgredlemb.k . . . . 5 𝐾 = (((♯‘𝐴) − 1) − 1)
22 efgredlem.1 . . . . . . . 8 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
23 efgredlem.3 . . . . . . . 8 (𝜑𝐵 ∈ dom 𝑆)
24 efgredlem.4 . . . . . . . 8 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
25 efgredlem.5 . . . . . . . 8 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
262, 3, 4, 5, 6, 7, 22, 1, 23, 24, 25efgredlema 19758 . . . . . . 7 (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ))
2726simpld 494 . . . . . 6 (𝜑 → ((♯‘𝐴) − 1) ∈ ℕ)
28 fzo0end 13797 . . . . . 6 (((♯‘𝐴) − 1) ∈ ℕ → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)))
2927, 28syl 17 . . . . 5 (𝜑 → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)))
3021, 29eqeltrid 2845 . . . 4 (𝜑𝐾 ∈ (0..^((♯‘𝐴) − 1)))
3120, 30sseldd 3984 . . 3 (𝜑𝐾 ∈ (0..^(♯‘𝐴)))
3213, 31ffvelcdmd 7105 . 2 (𝜑 → (𝐴𝐾) ∈ 𝑊)
332, 3, 4, 5, 6, 7efgsdm 19748 . . . . . . 7 (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐵))(𝐵𝑖) ∈ ran (𝑇‘(𝐵‘(𝑖 − 1)))))
3433simp1bi 1146 . . . . . 6 (𝐵 ∈ dom 𝑆𝐵 ∈ (Word 𝑊 ∖ {∅}))
3523, 34syl 17 . . . . 5 (𝜑𝐵 ∈ (Word 𝑊 ∖ {∅}))
3635eldifad 3963 . . . 4 (𝜑𝐵 ∈ Word 𝑊)
37 wrdf 14557 . . . 4 (𝐵 ∈ Word 𝑊𝐵:(0..^(♯‘𝐵))⟶𝑊)
3836, 37syl 17 . . 3 (𝜑𝐵:(0..^(♯‘𝐵))⟶𝑊)
39 fzossfz 13718 . . . . 5 (0..^((♯‘𝐵) − 1)) ⊆ (0...((♯‘𝐵) − 1))
40 lencl 14571 . . . . . . . 8 (𝐵 ∈ Word 𝑊 → (♯‘𝐵) ∈ ℕ0)
4136, 40syl 17 . . . . . . 7 (𝜑 → (♯‘𝐵) ∈ ℕ0)
4241nn0zd 12639 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℤ)
43 fzoval 13700 . . . . . 6 ((♯‘𝐵) ∈ ℤ → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1)))
4442, 43syl 17 . . . . 5 (𝜑 → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1)))
4539, 44sseqtrrid 4027 . . . 4 (𝜑 → (0..^((♯‘𝐵) − 1)) ⊆ (0..^(♯‘𝐵)))
46 efgredlemb.l . . . . 5 𝐿 = (((♯‘𝐵) − 1) − 1)
47 fzo0end 13797 . . . . . 6 (((♯‘𝐵) − 1) ∈ ℕ → (((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1)))
4826, 47simpl2im 503 . . . . 5 (𝜑 → (((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1)))
4946, 48eqeltrid 2845 . . . 4 (𝜑𝐿 ∈ (0..^((♯‘𝐵) − 1)))
5045, 49sseldd 3984 . . 3 (𝜑𝐿 ∈ (0..^(♯‘𝐵)))
5138, 50ffvelcdmd 7105 . 2 (𝜑 → (𝐵𝐿) ∈ 𝑊)
5232, 51jca 511 1 (𝜑 → ((𝐴𝐾) ∈ 𝑊 ∧ (𝐵𝐿) ∈ 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  {crab 3436  cdif 3948  c0 4333  {csn 4626  cop 4632  cotp 4634   ciun 4991   class class class wbr 5143  cmpt 5225   I cid 5577   × cxp 5683  dom cdm 5685  ran crn 5686  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433  1oc1o 8499  2oc2o 8500  0cc0 11155  1c1 11156   < clt 11295  cmin 11492  cn 12266  0cn0 12526  cz 12613  ...cfz 13547  ..^cfzo 13694  chash 14369  Word cword 14552   splice csplice 14787  ⟨“cs2 14880   ~FG cefg 19724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553
This theorem is referenced by:  efgredlemg  19760  efgredleme  19761
  Copyright terms: Public domain W3C validator