Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efgredlemf | Structured version Visualization version GIF version |
Description: Lemma for efgredleme 19424. (Contributed by Mario Carneiro, 4-Jun-2016.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
efgredlem.1 | ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) |
efgredlem.2 | ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) |
efgredlem.3 | ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) |
efgredlem.4 | ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) |
efgredlem.5 | ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) |
efgredlemb.k | ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) |
efgredlemb.l | ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) |
Ref | Expression |
---|---|
efgredlemf | ⊢ (𝜑 → ((𝐴‘𝐾) ∈ 𝑊 ∧ (𝐵‘𝐿) ∈ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgredlem.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) | |
2 | efgval.w | . . . . . . . 8 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
3 | efgval.r | . . . . . . . 8 ⊢ ∼ = ( ~FG ‘𝐼) | |
4 | efgval2.m | . . . . . . . 8 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
5 | efgval2.t | . . . . . . . 8 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
6 | efgred.d | . . . . . . . 8 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
7 | efgred.s | . . . . . . . 8 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
8 | 2, 3, 4, 5, 6, 7 | efgsdm 19411 | . . . . . . 7 ⊢ (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐴))(𝐴‘𝑖) ∈ ran (𝑇‘(𝐴‘(𝑖 − 1))))) |
9 | 8 | simp1bi 1144 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝑆 → 𝐴 ∈ (Word 𝑊 ∖ {∅})) |
10 | 1, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Word 𝑊 ∖ {∅})) |
11 | 10 | eldifad 3909 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Word 𝑊) |
12 | wrdf 14301 | . . . 4 ⊢ (𝐴 ∈ Word 𝑊 → 𝐴:(0..^(♯‘𝐴))⟶𝑊) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴:(0..^(♯‘𝐴))⟶𝑊) |
14 | fzossfz 13486 | . . . . 5 ⊢ (0..^((♯‘𝐴) − 1)) ⊆ (0...((♯‘𝐴) − 1)) | |
15 | lencl 14315 | . . . . . . . 8 ⊢ (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℕ0) | |
16 | 11, 15 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐴) ∈ ℕ0) |
17 | 16 | nn0zd 12504 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐴) ∈ ℤ) |
18 | fzoval 13468 | . . . . . 6 ⊢ ((♯‘𝐴) ∈ ℤ → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1))) | |
19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1))) |
20 | 14, 19 | sseqtrrid 3984 | . . . 4 ⊢ (𝜑 → (0..^((♯‘𝐴) − 1)) ⊆ (0..^(♯‘𝐴))) |
21 | efgredlemb.k | . . . . 5 ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) | |
22 | efgredlem.1 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) | |
23 | efgredlem.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) | |
24 | efgredlem.4 | . . . . . . . 8 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) | |
25 | efgredlem.5 | . . . . . . . 8 ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) | |
26 | 2, 3, 4, 5, 6, 7, 22, 1, 23, 24, 25 | efgredlema 19421 | . . . . . . 7 ⊢ (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ)) |
27 | 26 | simpld 495 | . . . . . 6 ⊢ (𝜑 → ((♯‘𝐴) − 1) ∈ ℕ) |
28 | fzo0end 13559 | . . . . . 6 ⊢ (((♯‘𝐴) − 1) ∈ ℕ → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1))) | |
29 | 27, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1))) |
30 | 21, 29 | eqeltrid 2842 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (0..^((♯‘𝐴) − 1))) |
31 | 20, 30 | sseldd 3932 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (0..^(♯‘𝐴))) |
32 | 13, 31 | ffvelcdmd 7002 | . 2 ⊢ (𝜑 → (𝐴‘𝐾) ∈ 𝑊) |
33 | 2, 3, 4, 5, 6, 7 | efgsdm 19411 | . . . . . . 7 ⊢ (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐵))(𝐵‘𝑖) ∈ ran (𝑇‘(𝐵‘(𝑖 − 1))))) |
34 | 33 | simp1bi 1144 | . . . . . 6 ⊢ (𝐵 ∈ dom 𝑆 → 𝐵 ∈ (Word 𝑊 ∖ {∅})) |
35 | 23, 34 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (Word 𝑊 ∖ {∅})) |
36 | 35 | eldifad 3909 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ Word 𝑊) |
37 | wrdf 14301 | . . . 4 ⊢ (𝐵 ∈ Word 𝑊 → 𝐵:(0..^(♯‘𝐵))⟶𝑊) | |
38 | 36, 37 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵:(0..^(♯‘𝐵))⟶𝑊) |
39 | fzossfz 13486 | . . . . 5 ⊢ (0..^((♯‘𝐵) − 1)) ⊆ (0...((♯‘𝐵) − 1)) | |
40 | lencl 14315 | . . . . . . . 8 ⊢ (𝐵 ∈ Word 𝑊 → (♯‘𝐵) ∈ ℕ0) | |
41 | 36, 40 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ0) |
42 | 41 | nn0zd 12504 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ∈ ℤ) |
43 | fzoval 13468 | . . . . . 6 ⊢ ((♯‘𝐵) ∈ ℤ → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1))) | |
44 | 42, 43 | syl 17 | . . . . 5 ⊢ (𝜑 → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1))) |
45 | 39, 44 | sseqtrrid 3984 | . . . 4 ⊢ (𝜑 → (0..^((♯‘𝐵) − 1)) ⊆ (0..^(♯‘𝐵))) |
46 | efgredlemb.l | . . . . 5 ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) | |
47 | fzo0end 13559 | . . . . . 6 ⊢ (((♯‘𝐵) − 1) ∈ ℕ → (((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1))) | |
48 | 26, 47 | simpl2im 504 | . . . . 5 ⊢ (𝜑 → (((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1))) |
49 | 46, 48 | eqeltrid 2842 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (0..^((♯‘𝐵) − 1))) |
50 | 45, 49 | sseldd 3932 | . . 3 ⊢ (𝜑 → 𝐿 ∈ (0..^(♯‘𝐵))) |
51 | 38, 50 | ffvelcdmd 7002 | . 2 ⊢ (𝜑 → (𝐵‘𝐿) ∈ 𝑊) |
52 | 32, 51 | jca 512 | 1 ⊢ (𝜑 → ((𝐴‘𝐾) ∈ 𝑊 ∧ (𝐵‘𝐿) ∈ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3062 {crab 3404 ∖ cdif 3894 ∅c0 4267 {csn 4571 〈cop 4577 〈cotp 4579 ∪ ciun 4937 class class class wbr 5087 ↦ cmpt 5170 I cid 5506 × cxp 5606 dom cdm 5608 ran crn 5609 ⟶wf 6462 ‘cfv 6466 (class class class)co 7317 ∈ cmpo 7319 1oc1o 8339 2oc2o 8340 0cc0 10951 1c1 10952 < clt 11089 − cmin 11285 ℕcn 12053 ℕ0cn0 12313 ℤcz 12399 ...cfz 13319 ..^cfzo 13462 ♯chash 14124 Word cword 14296 splice csplice 14541 〈“cs2 14633 ~FG cefg 19387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-card 9775 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-2 12116 df-n0 12314 df-z 12400 df-uz 12663 df-fz 13320 df-fzo 13463 df-hash 14125 df-word 14297 |
This theorem is referenced by: efgredlemg 19423 efgredleme 19424 |
Copyright terms: Public domain | W3C validator |