MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlemf Structured version   Visualization version   GIF version

Theorem efgredlemf 18468
Description: Lemma for efgredleme 18470. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgredlem.1 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
efgredlem.2 (𝜑𝐴 ∈ dom 𝑆)
efgredlem.3 (𝜑𝐵 ∈ dom 𝑆)
efgredlem.4 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
efgredlem.5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
efgredlemb.k 𝐾 = (((♯‘𝐴) − 1) − 1)
efgredlemb.l 𝐿 = (((♯‘𝐵) − 1) − 1)
Assertion
Ref Expression
efgredlemf (𝜑 → ((𝐴𝐾) ∈ 𝑊 ∧ (𝐵𝐿) ∈ 𝑊))
Distinct variable groups:   𝑎,𝑏,𝐴   𝑦,𝑎,𝑧,𝑏   𝐿,𝑎,𝑏   𝐾,𝑎,𝑏   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧   𝑚,𝑎,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑏   𝑘,𝑎,𝑇,𝑏,𝑚,𝑡,𝑥   𝑊,𝑎,𝑏   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑎,𝑏,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏   𝑆,𝑎,𝑏   𝐼,𝑎,𝑏,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑚,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛,𝑎,𝑏)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝐾(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgredlemf
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 efgredlem.2 . . . . . 6 (𝜑𝐴 ∈ dom 𝑆)
2 efgval.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
3 efgval.r . . . . . . . 8 = ( ~FG𝐼)
4 efgval2.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
5 efgval2.t . . . . . . . 8 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
6 efgred.d . . . . . . . 8 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
7 efgred.s . . . . . . . 8 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
82, 3, 4, 5, 6, 7efgsdm 18456 . . . . . . 7 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐴))(𝐴𝑖) ∈ ran (𝑇‘(𝐴‘(𝑖 − 1)))))
98simp1bi 1176 . . . . . 6 (𝐴 ∈ dom 𝑆𝐴 ∈ (Word 𝑊 ∖ {∅}))
101, 9syl 17 . . . . 5 (𝜑𝐴 ∈ (Word 𝑊 ∖ {∅}))
1110eldifad 3781 . . . 4 (𝜑𝐴 ∈ Word 𝑊)
12 wrdf 13539 . . . 4 (𝐴 ∈ Word 𝑊𝐴:(0..^(♯‘𝐴))⟶𝑊)
1311, 12syl 17 . . 3 (𝜑𝐴:(0..^(♯‘𝐴))⟶𝑊)
14 fzossfz 12743 . . . . 5 (0..^((♯‘𝐴) − 1)) ⊆ (0...((♯‘𝐴) − 1))
15 lencl 13553 . . . . . . . 8 (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℕ0)
1611, 15syl 17 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ ℕ0)
1716nn0zd 11770 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℤ)
18 fzoval 12726 . . . . . 6 ((♯‘𝐴) ∈ ℤ → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
1917, 18syl 17 . . . . 5 (𝜑 → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
2014, 19syl5sseqr 3850 . . . 4 (𝜑 → (0..^((♯‘𝐴) − 1)) ⊆ (0..^(♯‘𝐴)))
21 efgredlemb.k . . . . 5 𝐾 = (((♯‘𝐴) − 1) − 1)
22 efgredlem.1 . . . . . . . 8 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
23 efgredlem.3 . . . . . . . 8 (𝜑𝐵 ∈ dom 𝑆)
24 efgredlem.4 . . . . . . . 8 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
25 efgredlem.5 . . . . . . . 8 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
262, 3, 4, 5, 6, 7, 22, 1, 23, 24, 25efgredlema 18467 . . . . . . 7 (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ))
2726simpld 489 . . . . . 6 (𝜑 → ((♯‘𝐴) − 1) ∈ ℕ)
28 fzo0end 12815 . . . . . 6 (((♯‘𝐴) − 1) ∈ ℕ → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)))
2927, 28syl 17 . . . . 5 (𝜑 → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)))
3021, 29syl5eqel 2882 . . . 4 (𝜑𝐾 ∈ (0..^((♯‘𝐴) − 1)))
3120, 30sseldd 3799 . . 3 (𝜑𝐾 ∈ (0..^(♯‘𝐴)))
3213, 31ffvelrnd 6586 . 2 (𝜑 → (𝐴𝐾) ∈ 𝑊)
332, 3, 4, 5, 6, 7efgsdm 18456 . . . . . . 7 (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐵))(𝐵𝑖) ∈ ran (𝑇‘(𝐵‘(𝑖 − 1)))))
3433simp1bi 1176 . . . . . 6 (𝐵 ∈ dom 𝑆𝐵 ∈ (Word 𝑊 ∖ {∅}))
3523, 34syl 17 . . . . 5 (𝜑𝐵 ∈ (Word 𝑊 ∖ {∅}))
3635eldifad 3781 . . . 4 (𝜑𝐵 ∈ Word 𝑊)
37 wrdf 13539 . . . 4 (𝐵 ∈ Word 𝑊𝐵:(0..^(♯‘𝐵))⟶𝑊)
3836, 37syl 17 . . 3 (𝜑𝐵:(0..^(♯‘𝐵))⟶𝑊)
39 fzossfz 12743 . . . . 5 (0..^((♯‘𝐵) − 1)) ⊆ (0...((♯‘𝐵) − 1))
40 lencl 13553 . . . . . . . 8 (𝐵 ∈ Word 𝑊 → (♯‘𝐵) ∈ ℕ0)
4136, 40syl 17 . . . . . . 7 (𝜑 → (♯‘𝐵) ∈ ℕ0)
4241nn0zd 11770 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℤ)
43 fzoval 12726 . . . . . 6 ((♯‘𝐵) ∈ ℤ → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1)))
4442, 43syl 17 . . . . 5 (𝜑 → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1)))
4539, 44syl5sseqr 3850 . . . 4 (𝜑 → (0..^((♯‘𝐵) − 1)) ⊆ (0..^(♯‘𝐵)))
46 efgredlemb.l . . . . 5 𝐿 = (((♯‘𝐵) − 1) − 1)
4726simprd 490 . . . . . 6 (𝜑 → ((♯‘𝐵) − 1) ∈ ℕ)
48 fzo0end 12815 . . . . . 6 (((♯‘𝐵) − 1) ∈ ℕ → (((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1)))
4947, 48syl 17 . . . . 5 (𝜑 → (((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1)))
5046, 49syl5eqel 2882 . . . 4 (𝜑𝐿 ∈ (0..^((♯‘𝐵) − 1)))
5145, 50sseldd 3799 . . 3 (𝜑𝐿 ∈ (0..^(♯‘𝐵)))
5238, 51ffvelrnd 6586 . 2 (𝜑 → (𝐵𝐿) ∈ 𝑊)
5332, 52jca 508 1 (𝜑 → ((𝐴𝐾) ∈ 𝑊 ∧ (𝐵𝐿) ∈ 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 385   = wceq 1653  wcel 2157  wral 3089  {crab 3093  cdif 3766  c0 4115  {csn 4368  cop 4374  cotp 4376   ciun 4710   class class class wbr 4843  cmpt 4922   I cid 5219   × cxp 5310  dom cdm 5312  ran crn 5313  wf 6097  cfv 6101  (class class class)co 6878  cmpt2 6880  1𝑜c1o 7792  2𝑜c2o 7793  0cc0 10224  1c1 10225   < clt 10363  cmin 10556  cn 11312  0cn0 11580  cz 11666  ...cfz 12580  ..^cfzo 12720  chash 13370  Word cword 13534   splice csplice 13819  ⟨“cs2 13926   ~FG cefg 18432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-fzo 12721  df-hash 13371  df-word 13535
This theorem is referenced by:  efgredlemg  18469  efgredleme  18470
  Copyright terms: Public domain W3C validator