Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efgredlemf | Structured version Visualization version GIF version |
Description: Lemma for efgredleme 19264. (Contributed by Mario Carneiro, 4-Jun-2016.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
efgredlem.1 | ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) |
efgredlem.2 | ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) |
efgredlem.3 | ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) |
efgredlem.4 | ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) |
efgredlem.5 | ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) |
efgredlemb.k | ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) |
efgredlemb.l | ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) |
Ref | Expression |
---|---|
efgredlemf | ⊢ (𝜑 → ((𝐴‘𝐾) ∈ 𝑊 ∧ (𝐵‘𝐿) ∈ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgredlem.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) | |
2 | efgval.w | . . . . . . . 8 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
3 | efgval.r | . . . . . . . 8 ⊢ ∼ = ( ~FG ‘𝐼) | |
4 | efgval2.m | . . . . . . . 8 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
5 | efgval2.t | . . . . . . . 8 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
6 | efgred.d | . . . . . . . 8 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
7 | efgred.s | . . . . . . . 8 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
8 | 2, 3, 4, 5, 6, 7 | efgsdm 19251 | . . . . . . 7 ⊢ (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐴))(𝐴‘𝑖) ∈ ran (𝑇‘(𝐴‘(𝑖 − 1))))) |
9 | 8 | simp1bi 1143 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝑆 → 𝐴 ∈ (Word 𝑊 ∖ {∅})) |
10 | 1, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Word 𝑊 ∖ {∅})) |
11 | 10 | eldifad 3895 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Word 𝑊) |
12 | wrdf 14150 | . . . 4 ⊢ (𝐴 ∈ Word 𝑊 → 𝐴:(0..^(♯‘𝐴))⟶𝑊) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴:(0..^(♯‘𝐴))⟶𝑊) |
14 | fzossfz 13334 | . . . . 5 ⊢ (0..^((♯‘𝐴) − 1)) ⊆ (0...((♯‘𝐴) − 1)) | |
15 | lencl 14164 | . . . . . . . 8 ⊢ (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℕ0) | |
16 | 11, 15 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐴) ∈ ℕ0) |
17 | 16 | nn0zd 12353 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐴) ∈ ℤ) |
18 | fzoval 13317 | . . . . . 6 ⊢ ((♯‘𝐴) ∈ ℤ → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1))) | |
19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1))) |
20 | 14, 19 | sseqtrrid 3970 | . . . 4 ⊢ (𝜑 → (0..^((♯‘𝐴) − 1)) ⊆ (0..^(♯‘𝐴))) |
21 | efgredlemb.k | . . . . 5 ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) | |
22 | efgredlem.1 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) | |
23 | efgredlem.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) | |
24 | efgredlem.4 | . . . . . . . 8 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) | |
25 | efgredlem.5 | . . . . . . . 8 ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) | |
26 | 2, 3, 4, 5, 6, 7, 22, 1, 23, 24, 25 | efgredlema 19261 | . . . . . . 7 ⊢ (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ)) |
27 | 26 | simpld 494 | . . . . . 6 ⊢ (𝜑 → ((♯‘𝐴) − 1) ∈ ℕ) |
28 | fzo0end 13407 | . . . . . 6 ⊢ (((♯‘𝐴) − 1) ∈ ℕ → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1))) | |
29 | 27, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1))) |
30 | 21, 29 | eqeltrid 2843 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (0..^((♯‘𝐴) − 1))) |
31 | 20, 30 | sseldd 3918 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (0..^(♯‘𝐴))) |
32 | 13, 31 | ffvelrnd 6944 | . 2 ⊢ (𝜑 → (𝐴‘𝐾) ∈ 𝑊) |
33 | 2, 3, 4, 5, 6, 7 | efgsdm 19251 | . . . . . . 7 ⊢ (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐵))(𝐵‘𝑖) ∈ ran (𝑇‘(𝐵‘(𝑖 − 1))))) |
34 | 33 | simp1bi 1143 | . . . . . 6 ⊢ (𝐵 ∈ dom 𝑆 → 𝐵 ∈ (Word 𝑊 ∖ {∅})) |
35 | 23, 34 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (Word 𝑊 ∖ {∅})) |
36 | 35 | eldifad 3895 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ Word 𝑊) |
37 | wrdf 14150 | . . . 4 ⊢ (𝐵 ∈ Word 𝑊 → 𝐵:(0..^(♯‘𝐵))⟶𝑊) | |
38 | 36, 37 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵:(0..^(♯‘𝐵))⟶𝑊) |
39 | fzossfz 13334 | . . . . 5 ⊢ (0..^((♯‘𝐵) − 1)) ⊆ (0...((♯‘𝐵) − 1)) | |
40 | lencl 14164 | . . . . . . . 8 ⊢ (𝐵 ∈ Word 𝑊 → (♯‘𝐵) ∈ ℕ0) | |
41 | 36, 40 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ0) |
42 | 41 | nn0zd 12353 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ∈ ℤ) |
43 | fzoval 13317 | . . . . . 6 ⊢ ((♯‘𝐵) ∈ ℤ → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1))) | |
44 | 42, 43 | syl 17 | . . . . 5 ⊢ (𝜑 → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1))) |
45 | 39, 44 | sseqtrrid 3970 | . . . 4 ⊢ (𝜑 → (0..^((♯‘𝐵) − 1)) ⊆ (0..^(♯‘𝐵))) |
46 | efgredlemb.l | . . . . 5 ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) | |
47 | fzo0end 13407 | . . . . . 6 ⊢ (((♯‘𝐵) − 1) ∈ ℕ → (((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1))) | |
48 | 26, 47 | simpl2im 503 | . . . . 5 ⊢ (𝜑 → (((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1))) |
49 | 46, 48 | eqeltrid 2843 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (0..^((♯‘𝐵) − 1))) |
50 | 45, 49 | sseldd 3918 | . . 3 ⊢ (𝜑 → 𝐿 ∈ (0..^(♯‘𝐵))) |
51 | 38, 50 | ffvelrnd 6944 | . 2 ⊢ (𝜑 → (𝐵‘𝐿) ∈ 𝑊) |
52 | 32, 51 | jca 511 | 1 ⊢ (𝜑 → ((𝐴‘𝐾) ∈ 𝑊 ∧ (𝐵‘𝐿) ∈ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 ∖ cdif 3880 ∅c0 4253 {csn 4558 〈cop 4564 〈cotp 4566 ∪ ciun 4921 class class class wbr 5070 ↦ cmpt 5153 I cid 5479 × cxp 5578 dom cdm 5580 ran crn 5581 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1oc1o 8260 2oc2o 8261 0cc0 10802 1c1 10803 < clt 10940 − cmin 11135 ℕcn 11903 ℕ0cn0 12163 ℤcz 12249 ...cfz 13168 ..^cfzo 13311 ♯chash 13972 Word cword 14145 splice csplice 14390 〈“cs2 14482 ~FG cefg 19227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 |
This theorem is referenced by: efgredlemg 19263 efgredleme 19264 |
Copyright terms: Public domain | W3C validator |