MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlemf Structured version   Visualization version   GIF version

Theorem efgredlemf 19262
Description: Lemma for efgredleme 19264. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgredlem.1 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
efgredlem.2 (𝜑𝐴 ∈ dom 𝑆)
efgredlem.3 (𝜑𝐵 ∈ dom 𝑆)
efgredlem.4 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
efgredlem.5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
efgredlemb.k 𝐾 = (((♯‘𝐴) − 1) − 1)
efgredlemb.l 𝐿 = (((♯‘𝐵) − 1) − 1)
Assertion
Ref Expression
efgredlemf (𝜑 → ((𝐴𝐾) ∈ 𝑊 ∧ (𝐵𝐿) ∈ 𝑊))
Distinct variable groups:   𝑎,𝑏,𝐴   𝑦,𝑎,𝑧,𝑏   𝐿,𝑎,𝑏   𝐾,𝑎,𝑏   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧   𝑚,𝑎,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑏   𝑘,𝑎,𝑇,𝑏,𝑚,𝑡,𝑥   𝑊,𝑎,𝑏   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑎,𝑏,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏   𝑆,𝑎,𝑏   𝐼,𝑎,𝑏,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑚,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛,𝑎,𝑏)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝐾(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgredlemf
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 efgredlem.2 . . . . . 6 (𝜑𝐴 ∈ dom 𝑆)
2 efgval.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2o))
3 efgval.r . . . . . . . 8 = ( ~FG𝐼)
4 efgval2.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
5 efgval2.t . . . . . . . 8 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
6 efgred.d . . . . . . . 8 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
7 efgred.s . . . . . . . 8 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
82, 3, 4, 5, 6, 7efgsdm 19251 . . . . . . 7 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐴))(𝐴𝑖) ∈ ran (𝑇‘(𝐴‘(𝑖 − 1)))))
98simp1bi 1143 . . . . . 6 (𝐴 ∈ dom 𝑆𝐴 ∈ (Word 𝑊 ∖ {∅}))
101, 9syl 17 . . . . 5 (𝜑𝐴 ∈ (Word 𝑊 ∖ {∅}))
1110eldifad 3895 . . . 4 (𝜑𝐴 ∈ Word 𝑊)
12 wrdf 14150 . . . 4 (𝐴 ∈ Word 𝑊𝐴:(0..^(♯‘𝐴))⟶𝑊)
1311, 12syl 17 . . 3 (𝜑𝐴:(0..^(♯‘𝐴))⟶𝑊)
14 fzossfz 13334 . . . . 5 (0..^((♯‘𝐴) − 1)) ⊆ (0...((♯‘𝐴) − 1))
15 lencl 14164 . . . . . . . 8 (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℕ0)
1611, 15syl 17 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ ℕ0)
1716nn0zd 12353 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℤ)
18 fzoval 13317 . . . . . 6 ((♯‘𝐴) ∈ ℤ → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
1917, 18syl 17 . . . . 5 (𝜑 → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
2014, 19sseqtrrid 3970 . . . 4 (𝜑 → (0..^((♯‘𝐴) − 1)) ⊆ (0..^(♯‘𝐴)))
21 efgredlemb.k . . . . 5 𝐾 = (((♯‘𝐴) − 1) − 1)
22 efgredlem.1 . . . . . . . 8 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
23 efgredlem.3 . . . . . . . 8 (𝜑𝐵 ∈ dom 𝑆)
24 efgredlem.4 . . . . . . . 8 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
25 efgredlem.5 . . . . . . . 8 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
262, 3, 4, 5, 6, 7, 22, 1, 23, 24, 25efgredlema 19261 . . . . . . 7 (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ))
2726simpld 494 . . . . . 6 (𝜑 → ((♯‘𝐴) − 1) ∈ ℕ)
28 fzo0end 13407 . . . . . 6 (((♯‘𝐴) − 1) ∈ ℕ → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)))
2927, 28syl 17 . . . . 5 (𝜑 → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)))
3021, 29eqeltrid 2843 . . . 4 (𝜑𝐾 ∈ (0..^((♯‘𝐴) − 1)))
3120, 30sseldd 3918 . . 3 (𝜑𝐾 ∈ (0..^(♯‘𝐴)))
3213, 31ffvelrnd 6944 . 2 (𝜑 → (𝐴𝐾) ∈ 𝑊)
332, 3, 4, 5, 6, 7efgsdm 19251 . . . . . . 7 (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐵))(𝐵𝑖) ∈ ran (𝑇‘(𝐵‘(𝑖 − 1)))))
3433simp1bi 1143 . . . . . 6 (𝐵 ∈ dom 𝑆𝐵 ∈ (Word 𝑊 ∖ {∅}))
3523, 34syl 17 . . . . 5 (𝜑𝐵 ∈ (Word 𝑊 ∖ {∅}))
3635eldifad 3895 . . . 4 (𝜑𝐵 ∈ Word 𝑊)
37 wrdf 14150 . . . 4 (𝐵 ∈ Word 𝑊𝐵:(0..^(♯‘𝐵))⟶𝑊)
3836, 37syl 17 . . 3 (𝜑𝐵:(0..^(♯‘𝐵))⟶𝑊)
39 fzossfz 13334 . . . . 5 (0..^((♯‘𝐵) − 1)) ⊆ (0...((♯‘𝐵) − 1))
40 lencl 14164 . . . . . . . 8 (𝐵 ∈ Word 𝑊 → (♯‘𝐵) ∈ ℕ0)
4136, 40syl 17 . . . . . . 7 (𝜑 → (♯‘𝐵) ∈ ℕ0)
4241nn0zd 12353 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℤ)
43 fzoval 13317 . . . . . 6 ((♯‘𝐵) ∈ ℤ → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1)))
4442, 43syl 17 . . . . 5 (𝜑 → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1)))
4539, 44sseqtrrid 3970 . . . 4 (𝜑 → (0..^((♯‘𝐵) − 1)) ⊆ (0..^(♯‘𝐵)))
46 efgredlemb.l . . . . 5 𝐿 = (((♯‘𝐵) − 1) − 1)
47 fzo0end 13407 . . . . . 6 (((♯‘𝐵) − 1) ∈ ℕ → (((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1)))
4826, 47simpl2im 503 . . . . 5 (𝜑 → (((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1)))
4946, 48eqeltrid 2843 . . . 4 (𝜑𝐿 ∈ (0..^((♯‘𝐵) − 1)))
5045, 49sseldd 3918 . . 3 (𝜑𝐿 ∈ (0..^(♯‘𝐵)))
5138, 50ffvelrnd 6944 . 2 (𝜑 → (𝐵𝐿) ∈ 𝑊)
5232, 51jca 511 1 (𝜑 → ((𝐴𝐾) ∈ 𝑊 ∧ (𝐵𝐿) ∈ 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  cdif 3880  c0 4253  {csn 4558  cop 4564  cotp 4566   ciun 4921   class class class wbr 5070  cmpt 5153   I cid 5479   × cxp 5578  dom cdm 5580  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  1oc1o 8260  2oc2o 8261  0cc0 10802  1c1 10803   < clt 10940  cmin 11135  cn 11903  0cn0 12163  cz 12249  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145   splice csplice 14390  ⟨“cs2 14482   ~FG cefg 19227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146
This theorem is referenced by:  efgredlemg  19263  efgredleme  19264
  Copyright terms: Public domain W3C validator