| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sletrd | Structured version Visualization version GIF version | ||
| Description: Surreal less-than or equal is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| slttrd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| slttrd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| slttrd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| sletrd.4 | ⊢ (𝜑 → 𝐴 ≤s 𝐵) |
| sletrd.5 | ⊢ (𝜑 → 𝐵 ≤s 𝐶) |
| Ref | Expression |
|---|---|
| sletrd | ⊢ (𝜑 → 𝐴 ≤s 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sletrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤s 𝐵) | |
| 2 | sletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤s 𝐶) | |
| 3 | slttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 4 | slttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 5 | slttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 6 | sletr 27670 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐶) → 𝐴 ≤s 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐶) → 𝐴 ≤s 𝐶)) |
| 8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 ≤s 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 No csur 27551 ≤s csle 27656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 df-sle 27657 |
| This theorem is referenced by: mulsuniflem 28052 sleabs 28150 n0sge0 28230 |
| Copyright terms: Public domain | W3C validator |