![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sletrd | Structured version Visualization version GIF version |
Description: Surreal less-than or equal is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
slttrd.1 | âĒ (ð â ðī â No ) |
slttrd.2 | âĒ (ð â ðĩ â No ) |
slttrd.3 | âĒ (ð â ðķ â No ) |
sletrd.4 | âĒ (ð â ðī âĪs ðĩ) |
sletrd.5 | âĒ (ð â ðĩ âĪs ðķ) |
Ref | Expression |
---|---|
sletrd | âĒ (ð â ðī âĪs ðķ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sletrd.4 | . 2 âĒ (ð â ðī âĪs ðĩ) | |
2 | sletrd.5 | . 2 âĒ (ð â ðĩ âĪs ðķ) | |
3 | slttrd.1 | . . 3 âĒ (ð â ðī â No ) | |
4 | slttrd.2 | . . 3 âĒ (ð â ðĩ â No ) | |
5 | slttrd.3 | . . 3 âĒ (ð â ðķ â No ) | |
6 | sletr 27632 | . . 3 âĒ ((ðī â No â§ ðĩ â No â§ ðķ â No ) â ((ðī âĪs ðĩ â§ ðĩ âĪs ðķ) â ðī âĪs ðķ)) | |
7 | 3, 4, 5, 6 | syl3anc 1368 | . 2 âĒ (ð â ((ðī âĪs ðĩ â§ ðĩ âĪs ðķ) â ðī âĪs ðķ)) |
8 | 1, 2, 7 | mp2and 696 | 1 âĒ (ð â ðī âĪs ðķ) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 â§ wa 395 â wcel 2098 class class class wbr 5139 No csur 27514 âĪs csle 27618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ord 6358 df-on 6359 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-fv 6542 df-1o 8462 df-2o 8463 df-no 27517 df-slt 27518 df-sle 27619 |
This theorem is referenced by: mulsuniflem 27990 sleabs 28083 n0sge0 28147 |
Copyright terms: Public domain | W3C validator |