Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sletrd | Structured version Visualization version GIF version |
Description: Surreal less-than or equal is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
slttrd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
slttrd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
slttrd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
sletrd.4 | ⊢ (𝜑 → 𝐴 ≤s 𝐵) |
sletrd.5 | ⊢ (𝜑 → 𝐵 ≤s 𝐶) |
Ref | Expression |
---|---|
sletrd | ⊢ (𝜑 → 𝐴 ≤s 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sletrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤s 𝐵) | |
2 | sletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤s 𝐶) | |
3 | slttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
4 | slttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ No ) | |
5 | slttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ No ) | |
6 | sletr 27013 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐶) → 𝐴 ≤s 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1370 | . 2 ⊢ (𝜑 → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐶) → 𝐴 ≤s 𝐶)) |
8 | 1, 2, 7 | mp2and 696 | 1 ⊢ (𝜑 → 𝐴 ≤s 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 class class class wbr 5093 No csur 26895 ≤s csle 26999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6306 df-on 6307 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-fv 6488 df-1o 8368 df-2o 8369 df-no 26898 df-slt 26899 df-sle 27000 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |