![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sletrd | Structured version Visualization version GIF version |
Description: Surreal less-than or equal is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
slttrd.1 | âĒ (ð â ðī â No ) |
slttrd.2 | âĒ (ð â ðĩ â No ) |
slttrd.3 | âĒ (ð â ðķ â No ) |
sletrd.4 | âĒ (ð â ðī âĪs ðĩ) |
sletrd.5 | âĒ (ð â ðĩ âĪs ðķ) |
Ref | Expression |
---|---|
sletrd | âĒ (ð â ðī âĪs ðķ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sletrd.4 | . 2 âĒ (ð â ðī âĪs ðĩ) | |
2 | sletrd.5 | . 2 âĒ (ð â ðĩ âĪs ðķ) | |
3 | slttrd.1 | . . 3 âĒ (ð â ðī â No ) | |
4 | slttrd.2 | . . 3 âĒ (ð â ðĩ â No ) | |
5 | slttrd.3 | . . 3 âĒ (ð â ðķ â No ) | |
6 | sletr 27704 | . . 3 âĒ ((ðī â No â§ ðĩ â No â§ ðķ â No ) â ((ðī âĪs ðĩ â§ ðĩ âĪs ðķ) â ðī âĪs ðķ)) | |
7 | 3, 4, 5, 6 | syl3anc 1369 | . 2 âĒ (ð â ((ðī âĪs ðĩ â§ ðĩ âĪs ðķ) â ðī âĪs ðķ)) |
8 | 1, 2, 7 | mp2and 698 | 1 âĒ (ð â ðī âĪs ðķ) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 â§ wa 395 â wcel 2099 class class class wbr 5148 No csur 27586 âĪs csle 27690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6372 df-on 6373 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-1o 8487 df-2o 8488 df-no 27589 df-slt 27590 df-sle 27691 |
This theorem is referenced by: mulsuniflem 28062 sleabs 28155 n0sge0 28219 |
Copyright terms: Public domain | W3C validator |