![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sletrd | Structured version Visualization version GIF version |
Description: Surreal less-than or equal is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
slttrd.1 | âĒ (ð â ðī â No ) |
slttrd.2 | âĒ (ð â ðĩ â No ) |
slttrd.3 | âĒ (ð â ðķ â No ) |
sletrd.4 | âĒ (ð â ðī âĪs ðĩ) |
sletrd.5 | âĒ (ð â ðĩ âĪs ðķ) |
Ref | Expression |
---|---|
sletrd | âĒ (ð â ðī âĪs ðķ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sletrd.4 | . 2 âĒ (ð â ðī âĪs ðĩ) | |
2 | sletrd.5 | . 2 âĒ (ð â ðĩ âĪs ðķ) | |
3 | slttrd.1 | . . 3 âĒ (ð â ðī â No ) | |
4 | slttrd.2 | . . 3 âĒ (ð â ðĩ â No ) | |
5 | slttrd.3 | . . 3 âĒ (ð â ðķ â No ) | |
6 | sletr 27261 | . . 3 âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â ((ðī âĪs ðĩ ⧠ðĩ âĪs ðķ) â ðī âĪs ðķ)) | |
7 | 3, 4, 5, 6 | syl3anc 1372 | . 2 âĒ (ð â ((ðī âĪs ðĩ ⧠ðĩ âĪs ðķ) â ðī âĪs ðķ)) |
8 | 1, 2, 7 | mp2and 698 | 1 âĒ (ð â ðī âĪs ðķ) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 ⧠wa 397 â wcel 2107 class class class wbr 5149 No csur 27143 âĪs csle 27247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-1o 8466 df-2o 8467 df-no 27146 df-slt 27147 df-sle 27248 |
This theorem is referenced by: mulsuniflem 27604 |
Copyright terms: Public domain | W3C validator |