| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sleabs | Structured version Visualization version GIF version | ||
| Description: A surreal is less than or equal to its absolute value. (Contributed by Scott Fenton, 16-Apr-2025.) |
| Ref | Expression |
|---|---|
| sleabs | ⊢ (𝐴 ∈ No → 𝐴 ≤s (abss‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slerflex 27703 | . . . 4 ⊢ (𝐴 ∈ No → 𝐴 ≤s 𝐴) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → 𝐴 ≤s 𝐴) |
| 3 | abssid 28180 | . . 3 ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → (abss‘𝐴) = 𝐴) | |
| 4 | 2, 3 | breqtrrd 5121 | . 2 ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → 𝐴 ≤s (abss‘𝐴)) |
| 5 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → 𝐴 ∈ No ) | |
| 6 | 0sno 27771 | . . . . 5 ⊢ 0s ∈ No | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → 0s ∈ No ) |
| 8 | negscl 27979 | . . . . 5 ⊢ (𝐴 ∈ No → ( -us ‘𝐴) ∈ No ) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → ( -us ‘𝐴) ∈ No ) |
| 10 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → 𝐴 ≤s 0s ) | |
| 11 | negs0s 27969 | . . . . 5 ⊢ ( -us ‘ 0s ) = 0s | |
| 12 | 5, 7 | slenegd 27991 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (𝐴 ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us ‘𝐴))) |
| 13 | 10, 12 | mpbid 232 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → ( -us ‘ 0s ) ≤s ( -us ‘𝐴)) |
| 14 | 11, 13 | eqbrtrrid 5129 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → 0s ≤s ( -us ‘𝐴)) |
| 15 | 5, 7, 9, 10, 14 | sletrd 27702 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → 𝐴 ≤s ( -us ‘𝐴)) |
| 16 | abssnid 28182 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (abss‘𝐴) = ( -us ‘𝐴)) | |
| 17 | 15, 16 | breqtrrd 5121 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → 𝐴 ≤s (abss‘𝐴)) |
| 18 | sletric 27704 | . . 3 ⊢ (( 0s ∈ No ∧ 𝐴 ∈ No ) → ( 0s ≤s 𝐴 ∨ 𝐴 ≤s 0s )) | |
| 19 | 6, 18 | mpan 690 | . 2 ⊢ (𝐴 ∈ No → ( 0s ≤s 𝐴 ∨ 𝐴 ≤s 0s )) |
| 20 | 4, 17, 19 | mpjaodan 960 | 1 ⊢ (𝐴 ∈ No → 𝐴 ≤s (abss‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2113 class class class wbr 5093 ‘cfv 6486 No csur 27579 ≤s csle 27684 0s c0s 27767 -us cnegs 27962 absscabss 28176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-1o 8391 df-2o 8392 df-nadd 8587 df-no 27582 df-slt 27583 df-bday 27584 df-sle 27685 df-sslt 27722 df-scut 27724 df-0s 27769 df-made 27789 df-old 27790 df-left 27792 df-right 27793 df-norec 27882 df-norec2 27893 df-adds 27904 df-negs 27964 df-abss 28177 |
| This theorem is referenced by: absslt 28188 |
| Copyright terms: Public domain | W3C validator |