![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sleabs | Structured version Visualization version GIF version |
Description: A surreal is less than or equal to its absolute value. (Contributed by Scott Fenton, 16-Apr-2025.) |
Ref | Expression |
---|---|
sleabs | ⊢ (𝐴 ∈ No → 𝐴 ≤s (abss‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slerflex 27615 | . . . 4 ⊢ (𝐴 ∈ No → 𝐴 ≤s 𝐴) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → 𝐴 ≤s 𝐴) |
3 | abssid 28054 | . . 3 ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → (abss‘𝐴) = 𝐴) | |
4 | 2, 3 | breqtrrd 5167 | . 2 ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → 𝐴 ≤s (abss‘𝐴)) |
5 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → 𝐴 ∈ No ) | |
6 | 0sno 27678 | . . . . 5 ⊢ 0s ∈ No | |
7 | 6 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → 0s ∈ No ) |
8 | negscl 27867 | . . . . 5 ⊢ (𝐴 ∈ No → ( -us ‘𝐴) ∈ No ) | |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → ( -us ‘𝐴) ∈ No ) |
10 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → 𝐴 ≤s 0s ) | |
11 | negs0s 27858 | . . . . 5 ⊢ ( -us ‘ 0s ) = 0s | |
12 | 5, 7 | slenegd 27879 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (𝐴 ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us ‘𝐴))) |
13 | 10, 12 | mpbid 231 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → ( -us ‘ 0s ) ≤s ( -us ‘𝐴)) |
14 | 11, 13 | eqbrtrrid 5175 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → 0s ≤s ( -us ‘𝐴)) |
15 | 5, 7, 9, 10, 14 | sletrd 27614 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → 𝐴 ≤s ( -us ‘𝐴)) |
16 | abssnid 28056 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (abss‘𝐴) = ( -us ‘𝐴)) | |
17 | 15, 16 | breqtrrd 5167 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → 𝐴 ≤s (abss‘𝐴)) |
18 | sletric 27616 | . . 3 ⊢ (( 0s ∈ No ∧ 𝐴 ∈ No ) → ( 0s ≤s 𝐴 ∨ 𝐴 ≤s 0s )) | |
19 | 6, 18 | mpan 687 | . 2 ⊢ (𝐴 ∈ No → ( 0s ≤s 𝐴 ∨ 𝐴 ≤s 0s )) |
20 | 4, 17, 19 | mpjaodan 955 | 1 ⊢ (𝐴 ∈ No → 𝐴 ≤s (abss‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 ∈ wcel 2098 class class class wbr 5139 ‘cfv 6534 No csur 27492 ≤s csle 27596 0s c0s 27674 -us cnegs 27851 absscabss 28050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-ot 4630 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-1o 8462 df-2o 8463 df-nadd 8662 df-no 27495 df-slt 27496 df-bday 27497 df-sle 27597 df-sslt 27633 df-scut 27635 df-0s 27676 df-made 27693 df-old 27694 df-left 27696 df-right 27697 df-norec 27774 df-norec2 27785 df-adds 27796 df-negs 27853 df-abss 28051 |
This theorem is referenced by: absslt 28062 |
Copyright terms: Public domain | W3C validator |