![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sltletrd | Structured version Visualization version GIF version |
Description: Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
slttrd.1 | âĒ (ð â ðī â No ) |
slttrd.2 | âĒ (ð â ðĩ â No ) |
slttrd.3 | âĒ (ð â ðķ â No ) |
sltletrd.4 | âĒ (ð â ðī <s ðĩ) |
sltletrd.5 | âĒ (ð â ðĩ âĪs ðķ) |
Ref | Expression |
---|---|
sltletrd | âĒ (ð â ðī <s ðķ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltletrd.4 | . 2 âĒ (ð â ðī <s ðĩ) | |
2 | sltletrd.5 | . 2 âĒ (ð â ðĩ âĪs ðķ) | |
3 | slttrd.1 | . . 3 âĒ (ð â ðī â No ) | |
4 | slttrd.2 | . . 3 âĒ (ð â ðĩ â No ) | |
5 | slttrd.3 | . . 3 âĒ (ð â ðķ â No ) | |
6 | sltletr 27644 | . . 3 âĒ ((ðī â No â§ ðĩ â No â§ ðķ â No ) â ((ðī <s ðĩ â§ ðĩ âĪs ðķ) â ðī <s ðķ)) | |
7 | 3, 4, 5, 6 | syl3anc 1368 | . 2 âĒ (ð â ((ðī <s ðĩ â§ ðĩ âĪs ðķ) â ðī <s ðķ)) |
8 | 1, 2, 7 | mp2and 696 | 1 âĒ (ð â ðī <s ðķ) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 â§ wa 395 â wcel 2098 class class class wbr 5141 No csur 27528 <s cslt 27529 âĪs csle 27632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6361 df-on 6362 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-fv 6545 df-1o 8467 df-2o 8468 df-no 27531 df-slt 27532 df-sle 27633 |
This theorem is referenced by: slerec 27707 coinitsslt 27794 sleadd1 27861 |
Copyright terms: Public domain | W3C validator |