MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slttrd Structured version   Visualization version   GIF version

Theorem slttrd 27822
Description: Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021.)
Hypotheses
Ref Expression
slttrd.1 (𝜑𝐴 No )
slttrd.2 (𝜑𝐵 No )
slttrd.3 (𝜑𝐶 No )
slttrd.4 (𝜑𝐴 <s 𝐵)
slttrd.5 (𝜑𝐵 <s 𝐶)
Assertion
Ref Expression
slttrd (𝜑𝐴 <s 𝐶)

Proof of Theorem slttrd
StepHypRef Expression
1 slttrd.4 . 2 (𝜑𝐴 <s 𝐵)
2 slttrd.5 . 2 (𝜑𝐵 <s 𝐶)
3 slttrd.1 . . 3 (𝜑𝐴 No )
4 slttrd.2 . . 3 (𝜑𝐵 No )
5 slttrd.3 . . 3 (𝜑𝐶 No )
6 slttr 27810 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 <s 𝐵𝐵 <s 𝐶) → 𝐴 <s 𝐶))
73, 4, 5, 6syl3anc 1371 . 2 (𝜑 → ((𝐴 <s 𝐵𝐵 <s 𝐶) → 𝐴 <s 𝐶))
81, 2, 7mp2and 698 1 (𝜑𝐴 <s 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108   class class class wbr 5166   No csur 27702   <s cslt 27703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706
This theorem is referenced by:  conway  27862  sslttr  27870  slerec  27882  sltlpss  27963  cofcutr  27976  addsproplem2  28021  addsproplem6  28025  slt2addd  28064  negsproplem6  28083  mulsproplem5  28164  mulsproplem6  28165  mulsproplem7  28166  mulsproplem8  28167  mulsproplem13  28172  mulsproplem14  28173  precsexlem8  28256  precsexlem9  28257  precsexlem11  28259  om2noseqlt  28323  zscut  28411  recut  28446
  Copyright terms: Public domain W3C validator