MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slttrd Structured version   Visualization version   GIF version

Theorem slttrd 27262
Description: Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021.)
Hypotheses
Ref Expression
slttrd.1 (𝜑𝐴 No )
slttrd.2 (𝜑𝐵 No )
slttrd.3 (𝜑𝐶 No )
slttrd.4 (𝜑𝐴 <s 𝐵)
slttrd.5 (𝜑𝐵 <s 𝐶)
Assertion
Ref Expression
slttrd (𝜑𝐴 <s 𝐶)

Proof of Theorem slttrd
StepHypRef Expression
1 slttrd.4 . 2 (𝜑𝐴 <s 𝐵)
2 slttrd.5 . 2 (𝜑𝐵 <s 𝐶)
3 slttrd.1 . . 3 (𝜑𝐴 No )
4 slttrd.2 . . 3 (𝜑𝐵 No )
5 slttrd.3 . . 3 (𝜑𝐶 No )
6 slttr 27250 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 <s 𝐵𝐵 <s 𝐶) → 𝐴 <s 𝐶))
73, 4, 5, 6syl3anc 1372 . 2 (𝜑 → ((𝐴 <s 𝐵𝐵 <s 𝐶) → 𝐴 <s 𝐶))
81, 2, 7mp2and 698 1 (𝜑𝐴 <s 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107   class class class wbr 5149   No csur 27143   <s cslt 27144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-1o 8466  df-2o 8467  df-no 27146  df-slt 27147
This theorem is referenced by:  conway  27300  sslttr  27308  slerec  27320  sltlpss  27401  cofcutr  27411  addsproplem2  27454  addsproplem6  27458  negsproplem6  27507  mulsproplem5  27576  mulsproplem6  27577  mulsproplem7  27578  mulsproplem8  27579  mulsproplem13  27584  mulsproplem14  27585  precsexlem8  27660  precsexlem9  27661  precsexlem11  27663
  Copyright terms: Public domain W3C validator