MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slttrd Structured version   Visualization version   GIF version

Theorem slttrd 27704
Description: Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021.)
Hypotheses
Ref Expression
slttrd.1 (𝜑𝐴 No )
slttrd.2 (𝜑𝐵 No )
slttrd.3 (𝜑𝐶 No )
slttrd.4 (𝜑𝐴 <s 𝐵)
slttrd.5 (𝜑𝐵 <s 𝐶)
Assertion
Ref Expression
slttrd (𝜑𝐴 <s 𝐶)

Proof of Theorem slttrd
StepHypRef Expression
1 slttrd.4 . 2 (𝜑𝐴 <s 𝐵)
2 slttrd.5 . 2 (𝜑𝐵 <s 𝐶)
3 slttrd.1 . . 3 (𝜑𝐴 No )
4 slttrd.2 . . 3 (𝜑𝐵 No )
5 slttrd.3 . . 3 (𝜑𝐶 No )
6 slttr 27692 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 <s 𝐵𝐵 <s 𝐶) → 𝐴 <s 𝐶))
73, 4, 5, 6syl3anc 1373 . 2 (𝜑 → ((𝐴 <s 𝐵𝐵 <s 𝐶) → 𝐴 <s 𝐶))
81, 2, 7mp2and 699 1 (𝜑𝐴 <s 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5102   No csur 27584   <s cslt 27585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-1o 8411  df-2o 8412  df-no 27587  df-slt 27588
This theorem is referenced by:  conway  27745  sslttr  27753  slerec  27765  sltlpss  27857  cofcutr  27872  addsproplem2  27917  addsproplem6  27921  slt2addd  27960  negsproplem6  27979  mulsproplem5  28063  mulsproplem6  28064  mulsproplem7  28065  mulsproplem8  28066  mulsproplem13  28071  mulsproplem14  28072  precsexlem8  28156  precsexlem9  28157  precsexlem11  28159  om2noseqlt  28233  zscut  28335  twocut  28350  recut  28400
  Copyright terms: Public domain W3C validator