![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slttrd | Structured version Visualization version GIF version |
Description: Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
slttrd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
slttrd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
slttrd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
slttrd.4 | ⊢ (𝜑 → 𝐴 <s 𝐵) |
slttrd.5 | ⊢ (𝜑 → 𝐵 <s 𝐶) |
Ref | Expression |
---|---|
slttrd | ⊢ (𝜑 → 𝐴 <s 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slttrd.4 | . 2 ⊢ (𝜑 → 𝐴 <s 𝐵) | |
2 | slttrd.5 | . 2 ⊢ (𝜑 → 𝐵 <s 𝐶) | |
3 | slttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
4 | slttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ No ) | |
5 | slttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ No ) | |
6 | slttr 27810 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 <s 𝐵 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1371 | . 2 ⊢ (𝜑 → ((𝐴 <s 𝐵 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) |
8 | 1, 2, 7 | mp2and 698 | 1 ⊢ (𝜑 → 𝐴 <s 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 No csur 27702 <s cslt 27703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-1o 8522 df-2o 8523 df-no 27705 df-slt 27706 |
This theorem is referenced by: conway 27862 sslttr 27870 slerec 27882 sltlpss 27963 cofcutr 27976 addsproplem2 28021 addsproplem6 28025 slt2addd 28064 negsproplem6 28083 mulsproplem5 28164 mulsproplem6 28165 mulsproplem7 28166 mulsproplem8 28167 mulsproplem13 28172 mulsproplem14 28173 precsexlem8 28256 precsexlem9 28257 precsexlem11 28259 om2noseqlt 28323 zscut 28411 recut 28446 |
Copyright terms: Public domain | W3C validator |