| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slttrd | Structured version Visualization version GIF version | ||
| Description: Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| slttrd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| slttrd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| slttrd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| slttrd.4 | ⊢ (𝜑 → 𝐴 <s 𝐵) |
| slttrd.5 | ⊢ (𝜑 → 𝐵 <s 𝐶) |
| Ref | Expression |
|---|---|
| slttrd | ⊢ (𝜑 → 𝐴 <s 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slttrd.4 | . 2 ⊢ (𝜑 → 𝐴 <s 𝐵) | |
| 2 | slttrd.5 | . 2 ⊢ (𝜑 → 𝐵 <s 𝐶) | |
| 3 | slttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 4 | slttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 5 | slttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 6 | slttr 27686 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 <s 𝐵 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 <s 𝐵 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) |
| 8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 <s 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 class class class wbr 5089 No csur 27578 <s cslt 27579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-1o 8385 df-2o 8386 df-no 27581 df-slt 27582 |
| This theorem is referenced by: conway 27740 sslttr 27748 slerec 27760 sltlpss 27853 cofcutr 27868 addsproplem2 27913 addsproplem6 27917 slt2addd 27956 negsproplem6 27975 mulsproplem5 28059 mulsproplem6 28060 mulsproplem7 28061 mulsproplem8 28062 mulsproplem13 28067 mulsproplem14 28068 precsexlem8 28152 precsexlem9 28153 precsexlem11 28155 om2noseqlt 28229 zscut 28331 twocut 28346 pw2cut2 28382 recut 28398 |
| Copyright terms: Public domain | W3C validator |