| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slttrd | Structured version Visualization version GIF version | ||
| Description: Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| slttrd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| slttrd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| slttrd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| slttrd.4 | ⊢ (𝜑 → 𝐴 <s 𝐵) |
| slttrd.5 | ⊢ (𝜑 → 𝐵 <s 𝐶) |
| Ref | Expression |
|---|---|
| slttrd | ⊢ (𝜑 → 𝐴 <s 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slttrd.4 | . 2 ⊢ (𝜑 → 𝐴 <s 𝐵) | |
| 2 | slttrd.5 | . 2 ⊢ (𝜑 → 𝐵 <s 𝐶) | |
| 3 | slttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 4 | slttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 5 | slttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 6 | slttr 27692 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 <s 𝐵 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 <s 𝐵 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) |
| 8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 <s 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5102 No csur 27584 <s cslt 27585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-1o 8411 df-2o 8412 df-no 27587 df-slt 27588 |
| This theorem is referenced by: conway 27745 sslttr 27753 slerec 27765 sltlpss 27857 cofcutr 27872 addsproplem2 27917 addsproplem6 27921 slt2addd 27960 negsproplem6 27979 mulsproplem5 28063 mulsproplem6 28064 mulsproplem7 28065 mulsproplem8 28066 mulsproplem13 28071 mulsproplem14 28072 precsexlem8 28156 precsexlem9 28157 precsexlem11 28159 om2noseqlt 28233 zscut 28335 twocut 28350 recut 28400 |
| Copyright terms: Public domain | W3C validator |