| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slttrd | Structured version Visualization version GIF version | ||
| Description: Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| slttrd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| slttrd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| slttrd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| slttrd.4 | ⊢ (𝜑 → 𝐴 <s 𝐵) |
| slttrd.5 | ⊢ (𝜑 → 𝐵 <s 𝐶) |
| Ref | Expression |
|---|---|
| slttrd | ⊢ (𝜑 → 𝐴 <s 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slttrd.4 | . 2 ⊢ (𝜑 → 𝐴 <s 𝐵) | |
| 2 | slttrd.5 | . 2 ⊢ (𝜑 → 𝐵 <s 𝐶) | |
| 3 | slttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 4 | slttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 5 | slttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 6 | slttr 27657 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 <s 𝐵 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 <s 𝐵 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) |
| 8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 <s 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5092 No csur 27549 <s cslt 27550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-1o 8388 df-2o 8389 df-no 27552 df-slt 27553 |
| This theorem is referenced by: conway 27710 sslttr 27718 slerec 27730 sltlpss 27822 cofcutr 27837 addsproplem2 27882 addsproplem6 27886 slt2addd 27925 negsproplem6 27944 mulsproplem5 28028 mulsproplem6 28029 mulsproplem7 28030 mulsproplem8 28031 mulsproplem13 28036 mulsproplem14 28037 precsexlem8 28121 precsexlem9 28122 precsexlem11 28124 om2noseqlt 28198 zscut 28300 twocut 28315 recut 28365 |
| Copyright terms: Public domain | W3C validator |