| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a subring predicate. (Contributed by Mario Carneiro, 3-Dec-2014.) |
| Ref | Expression |
|---|---|
| subrgrcl | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2735 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | 1, 2 | issubrg 20531 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴))) |
| 4 | 3 | simplbi 497 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring)) |
| 5 | 4 | simpld 494 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3926 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 ↾s cress 17251 1rcur 20141 Ringcrg 20193 SubRingcsubrg 20529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-subrg 20530 |
| This theorem is referenced by: subrgsubg 20537 subrg1 20542 subrgsubm 20545 subrginv 20548 subrgunit 20550 subrgugrp 20551 opprsubrg 20553 subrgint 20555 subsubrg 20558 resrhm2b 20562 sralmod 21145 subrgpsr 21938 subrgmpl 21990 subrgmvr 21991 subrgmvrf 21992 subrgascl 22024 subrgasclcl 22025 asclply1subcl 22312 subrdom 33279 idlinsubrg 33446 ressply10g 33580 ressply1invg 33582 |
| Copyright terms: Public domain | W3C validator |