Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgrcl | Structured version Visualization version GIF version |
Description: Reverse closure for a subring predicate. (Contributed by Mario Carneiro, 3-Dec-2014.) |
Ref | Expression |
---|---|
subrgrcl | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2738 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
3 | 1, 2 | issubrg 20034 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴))) |
4 | 3 | simplbi 498 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring)) |
5 | 4 | simpld 495 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3886 ‘cfv 6426 (class class class)co 7267 Basecbs 16922 ↾s cress 16951 1rcur 19747 Ringcrg 19793 SubRingcsubrg 20030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fv 6434 df-ov 7270 df-subrg 20032 |
This theorem is referenced by: subrgsubg 20040 subrg1 20044 subrgsubm 20047 subrginv 20050 subrgunit 20052 subrgugrp 20053 opprsubrg 20055 subrgint 20056 subsubrg 20060 sralmod 20467 subrgpsr 21198 subrgmpl 21243 subrgmvr 21244 subrgmvrf 21245 subrgascl 21284 subrgasclcl 21285 idlinsubrg 31616 |
Copyright terms: Public domain | W3C validator |