Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgrcl | Structured version Visualization version GIF version |
Description: Reverse closure for a subring predicate. (Contributed by Mario Carneiro, 3-Dec-2014.) |
Ref | Expression |
---|---|
subrgrcl | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2738 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
3 | 1, 2 | issubrg 20024 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴))) |
4 | 3 | simplbi 498 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring)) |
5 | 4 | simpld 495 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 ↾s cress 16941 1rcur 19737 Ringcrg 19783 SubRingcsubrg 20020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-subrg 20022 |
This theorem is referenced by: subrgsubg 20030 subrg1 20034 subrgsubm 20037 subrginv 20040 subrgunit 20042 subrgugrp 20043 opprsubrg 20045 subrgint 20046 subsubrg 20050 sralmod 20457 subrgpsr 21188 subrgmpl 21233 subrgmvr 21234 subrgmvrf 21235 subrgascl 21274 subrgasclcl 21275 idlinsubrg 31608 |
Copyright terms: Public domain | W3C validator |