MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgrcl Structured version   Visualization version   GIF version

Theorem subrgrcl 20039
Description: Reverse closure for a subring predicate. (Contributed by Mario Carneiro, 3-Dec-2014.)
Assertion
Ref Expression
subrgrcl (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)

Proof of Theorem subrgrcl
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2738 . . . 4 (1r𝑅) = (1r𝑅)
31, 2issubrg 20034 . . 3 (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴)))
43simplbi 498 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring))
54simpld 495 1 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wss 3886  cfv 6426  (class class class)co 7267  Basecbs 16922  s cress 16951  1rcur 19747  Ringcrg 19793  SubRingcsubrg 20030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3431  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fv 6434  df-ov 7270  df-subrg 20032
This theorem is referenced by:  subrgsubg  20040  subrg1  20044  subrgsubm  20047  subrginv  20050  subrgunit  20052  subrgugrp  20053  opprsubrg  20055  subrgint  20056  subsubrg  20060  sralmod  20467  subrgpsr  21198  subrgmpl  21243  subrgmvr  21244  subrgmvrf  21245  subrgascl  21284  subrgasclcl  21285  idlinsubrg  31616
  Copyright terms: Public domain W3C validator