MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgrcl Structured version   Visualization version   GIF version

Theorem subrgrcl 20492
Description: Reverse closure for a subring predicate. (Contributed by Mario Carneiro, 3-Dec-2014.)
Assertion
Ref Expression
subrgrcl (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)

Proof of Theorem subrgrcl
StepHypRef Expression
1 eqid 2730 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2730 . . . 4 (1r𝑅) = (1r𝑅)
31, 2issubrg 20487 . . 3 (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴)))
43simplbi 497 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring))
54simpld 494 1 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3917  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  1rcur 20097  Ringcrg 20149  SubRingcsubrg 20485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-subrg 20486
This theorem is referenced by:  subrgsubg  20493  subrg1  20498  subrgsubm  20501  subrginv  20504  subrgunit  20506  subrgugrp  20507  opprsubrg  20509  subrgint  20511  subsubrg  20514  resrhm2b  20518  sralmod  21101  subrgpsr  21894  subrgmpl  21946  subrgmvr  21947  subrgmvrf  21948  subrgascl  21980  subrgasclcl  21981  asclply1subcl  22268  subrdom  33242  idlinsubrg  33409  ressply10g  33543  ressply1invg  33545
  Copyright terms: Public domain W3C validator