MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgrcl Structured version   Visualization version   GIF version

Theorem subrgrcl 20467
Description: Reverse closure for a subring predicate. (Contributed by Mario Carneiro, 3-Dec-2014.)
Assertion
Ref Expression
subrgrcl (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝑅 ∈ Ring)

Proof of Theorem subrgrcl
StepHypRef Expression
1 eqid 2731 . . . 4 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
2 eqid 2731 . . . 4 (1rβ€˜π‘…) = (1rβ€˜π‘…)
31, 2issubrg 20462 . . 3 (𝐴 ∈ (SubRingβ€˜π‘…) ↔ ((𝑅 ∈ Ring ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ (𝐴 βŠ† (Baseβ€˜π‘…) ∧ (1rβ€˜π‘…) ∈ 𝐴)))
43simplbi 497 . 2 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (𝑅 ∈ Ring ∧ (𝑅 β†Ύs 𝐴) ∈ Ring))
54simpld 494 1 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∈ wcel 2105   βŠ† wss 3948  β€˜cfv 6543  (class class class)co 7412  Basecbs 17149   β†Ύs cress 17178  1rcur 20076  Ringcrg 20128  SubRingcsubrg 20458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-subrg 20460
This theorem is referenced by:  subrgsubg  20468  subrg1  20473  subrgsubm  20476  subrginv  20479  subrgunit  20481  subrgugrp  20482  opprsubrg  20484  subrgint  20486  subsubrg  20489  resrhm2b  20493  sralmod  20955  subrgpsr  21759  subrgmpl  21807  subrgmvr  21808  subrgmvrf  21809  subrgascl  21847  subrgasclcl  21848  idlinsubrg  32824  ressply10g  32931  ressply1invg  32933  asclply1subcl  32935
  Copyright terms: Public domain W3C validator