MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgrcl Structured version   Visualization version   GIF version

Theorem subrgrcl 20489
Description: Reverse closure for a subring predicate. (Contributed by Mario Carneiro, 3-Dec-2014.)
Assertion
Ref Expression
subrgrcl (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)

Proof of Theorem subrgrcl
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2731 . . . 4 (1r𝑅) = (1r𝑅)
31, 2issubrg 20484 . . 3 (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴)))
43simplbi 497 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring))
54simpld 494 1 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wss 3902  cfv 6481  (class class class)co 7346  Basecbs 17117  s cress 17138  1rcur 20097  Ringcrg 20149  SubRingcsubrg 20482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-subrg 20483
This theorem is referenced by:  subrgsubg  20490  subrg1  20495  subrgsubm  20498  subrginv  20501  subrgunit  20503  subrgugrp  20504  opprsubrg  20506  subrgint  20508  subsubrg  20511  resrhm2b  20515  sralmod  21119  subrgpsr  21913  subrgmpl  21965  subrgmvr  21966  subrgmvrf  21967  subrgascl  21999  subrgasclcl  22000  asclply1subcl  22287  subrdom  33246  idlinsubrg  33391  ressply10g  33525  ressply1invg  33527
  Copyright terms: Public domain W3C validator