Step | Hyp | Ref
| Expression |
1 | | subrgrcl 20324 |
. . . . 5
β’ (π΄ β (SubRingβπ
) β π
β Ring) |
2 | 1 | adantr 482 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ π β π) β π
β Ring) |
3 | | subrginv.1 |
. . . . . . . 8
β’ π = (π
βΎs π΄) |
4 | 3 | subrgbas 20328 |
. . . . . . 7
β’ (π΄ β (SubRingβπ
) β π΄ = (Baseβπ)) |
5 | | eqid 2733 |
. . . . . . . 8
β’
(Baseβπ
) =
(Baseβπ
) |
6 | 5 | subrgss 20320 |
. . . . . . 7
β’ (π΄ β (SubRingβπ
) β π΄ β (Baseβπ
)) |
7 | 4, 6 | eqsstrrd 4022 |
. . . . . 6
β’ (π΄ β (SubRingβπ
) β (Baseβπ) β (Baseβπ
)) |
8 | 7 | adantr 482 |
. . . . 5
β’ ((π΄ β (SubRingβπ
) β§ π β π) β (Baseβπ) β (Baseβπ
)) |
9 | 3 | subrgring 20322 |
. . . . . 6
β’ (π΄ β (SubRingβπ
) β π β Ring) |
10 | | subrginv.3 |
. . . . . . 7
β’ π = (Unitβπ) |
11 | | subrginv.4 |
. . . . . . 7
β’ π½ = (invrβπ) |
12 | | eqid 2733 |
. . . . . . 7
β’
(Baseβπ) =
(Baseβπ) |
13 | 10, 11, 12 | ringinvcl 20206 |
. . . . . 6
β’ ((π β Ring β§ π β π) β (π½βπ) β (Baseβπ)) |
14 | 9, 13 | sylan 581 |
. . . . 5
β’ ((π΄ β (SubRingβπ
) β§ π β π) β (π½βπ) β (Baseβπ)) |
15 | 8, 14 | sseldd 3984 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ π β π) β (π½βπ) β (Baseβπ
)) |
16 | 12, 10 | unitcl 20189 |
. . . . . 6
β’ (π β π β π β (Baseβπ)) |
17 | 16 | adantl 483 |
. . . . 5
β’ ((π΄ β (SubRingβπ
) β§ π β π) β π β (Baseβπ)) |
18 | 8, 17 | sseldd 3984 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ π β π) β π β (Baseβπ
)) |
19 | | eqid 2733 |
. . . . . . 7
β’
(Unitβπ
) =
(Unitβπ
) |
20 | 3, 19, 10 | subrguss 20334 |
. . . . . 6
β’ (π΄ β (SubRingβπ
) β π β (Unitβπ
)) |
21 | 20 | sselda 3983 |
. . . . 5
β’ ((π΄ β (SubRingβπ
) β§ π β π) β π β (Unitβπ
)) |
22 | | subrginv.2 |
. . . . . 6
β’ πΌ = (invrβπ
) |
23 | 19, 22, 5 | ringinvcl 20206 |
. . . . 5
β’ ((π
β Ring β§ π β (Unitβπ
)) β (πΌβπ) β (Baseβπ
)) |
24 | 1, 21, 23 | syl2an2r 684 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ π β π) β (πΌβπ) β (Baseβπ
)) |
25 | | eqid 2733 |
. . . . 5
β’
(.rβπ
) = (.rβπ
) |
26 | 5, 25 | ringass 20076 |
. . . 4
β’ ((π
β Ring β§ ((π½βπ) β (Baseβπ
) β§ π β (Baseβπ
) β§ (πΌβπ) β (Baseβπ
))) β (((π½βπ)(.rβπ
)π)(.rβπ
)(πΌβπ)) = ((π½βπ)(.rβπ
)(π(.rβπ
)(πΌβπ)))) |
27 | 2, 15, 18, 24, 26 | syl13anc 1373 |
. . 3
β’ ((π΄ β (SubRingβπ
) β§ π β π) β (((π½βπ)(.rβπ
)π)(.rβπ
)(πΌβπ)) = ((π½βπ)(.rβπ
)(π(.rβπ
)(πΌβπ)))) |
28 | | eqid 2733 |
. . . . . . 7
β’
(.rβπ) = (.rβπ) |
29 | | eqid 2733 |
. . . . . . 7
β’
(1rβπ) = (1rβπ) |
30 | 10, 11, 28, 29 | unitlinv 20207 |
. . . . . 6
β’ ((π β Ring β§ π β π) β ((π½βπ)(.rβπ)π) = (1rβπ)) |
31 | 9, 30 | sylan 581 |
. . . . 5
β’ ((π΄ β (SubRingβπ
) β§ π β π) β ((π½βπ)(.rβπ)π) = (1rβπ)) |
32 | 3, 25 | ressmulr 17252 |
. . . . . . 7
β’ (π΄ β (SubRingβπ
) β
(.rβπ
) =
(.rβπ)) |
33 | 32 | adantr 482 |
. . . . . 6
β’ ((π΄ β (SubRingβπ
) β§ π β π) β (.rβπ
) = (.rβπ)) |
34 | 33 | oveqd 7426 |
. . . . 5
β’ ((π΄ β (SubRingβπ
) β§ π β π) β ((π½βπ)(.rβπ
)π) = ((π½βπ)(.rβπ)π)) |
35 | | eqid 2733 |
. . . . . . 7
β’
(1rβπ
) = (1rβπ
) |
36 | 3, 35 | subrg1 20329 |
. . . . . 6
β’ (π΄ β (SubRingβπ
) β
(1rβπ
) =
(1rβπ)) |
37 | 36 | adantr 482 |
. . . . 5
β’ ((π΄ β (SubRingβπ
) β§ π β π) β (1rβπ
) = (1rβπ)) |
38 | 31, 34, 37 | 3eqtr4d 2783 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ π β π) β ((π½βπ)(.rβπ
)π) = (1rβπ
)) |
39 | 38 | oveq1d 7424 |
. . 3
β’ ((π΄ β (SubRingβπ
) β§ π β π) β (((π½βπ)(.rβπ
)π)(.rβπ
)(πΌβπ)) = ((1rβπ
)(.rβπ
)(πΌβπ))) |
40 | 19, 22, 25, 35 | unitrinv 20208 |
. . . . 5
β’ ((π
β Ring β§ π β (Unitβπ
)) β (π(.rβπ
)(πΌβπ)) = (1rβπ
)) |
41 | 1, 21, 40 | syl2an2r 684 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ π β π) β (π(.rβπ
)(πΌβπ)) = (1rβπ
)) |
42 | 41 | oveq2d 7425 |
. . 3
β’ ((π΄ β (SubRingβπ
) β§ π β π) β ((π½βπ)(.rβπ
)(π(.rβπ
)(πΌβπ))) = ((π½βπ)(.rβπ
)(1rβπ
))) |
43 | 27, 39, 42 | 3eqtr3d 2781 |
. 2
β’ ((π΄ β (SubRingβπ
) β§ π β π) β ((1rβπ
)(.rβπ
)(πΌβπ)) = ((π½βπ)(.rβπ
)(1rβπ
))) |
44 | 5, 25, 35 | ringlidm 20086 |
. . 3
β’ ((π
β Ring β§ (πΌβπ) β (Baseβπ
)) β ((1rβπ
)(.rβπ
)(πΌβπ)) = (πΌβπ)) |
45 | 1, 24, 44 | syl2an2r 684 |
. 2
β’ ((π΄ β (SubRingβπ
) β§ π β π) β ((1rβπ
)(.rβπ
)(πΌβπ)) = (πΌβπ)) |
46 | 5, 25, 35 | ringridm 20087 |
. . 3
β’ ((π
β Ring β§ (π½βπ) β (Baseβπ
)) β ((π½βπ)(.rβπ
)(1rβπ
)) = (π½βπ)) |
47 | 1, 15, 46 | syl2an2r 684 |
. 2
β’ ((π΄ β (SubRingβπ
) β§ π β π) β ((π½βπ)(.rβπ
)(1rβπ
)) = (π½βπ)) |
48 | 43, 45, 47 | 3eqtr3d 2781 |
1
β’ ((π΄ β (SubRingβπ
) β§ π β π) β (πΌβπ) = (π½βπ)) |