![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > asclply1subcl | Structured version Visualization version GIF version |
Description: Closure of the algebra scalar injection function in a polynomial on a subring. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
Ref | Expression |
---|---|
asclply1subcl.1 | ⊢ 𝐴 = (algSc‘𝑉) |
asclply1subcl.2 | ⊢ 𝑈 = (𝑅 ↾s 𝑆) |
asclply1subcl.3 | ⊢ 𝑉 = (Poly1‘𝑅) |
asclply1subcl.4 | ⊢ 𝑊 = (Poly1‘𝑈) |
asclply1subcl.5 | ⊢ 𝑃 = (Base‘𝑊) |
asclply1subcl.6 | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
asclply1subcl.7 | ⊢ (𝜑 → 𝑍 ∈ 𝑆) |
Ref | Expression |
---|---|
asclply1subcl | ⊢ (𝜑 → (𝐴‘𝑍) ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclply1subcl.6 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
2 | eqid 2728 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 2 | subrgss 20505 | . . . . . 6 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ (Base‘𝑅)) |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑅)) |
5 | asclply1subcl.7 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑆) | |
6 | 4, 5 | sseldd 3980 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝑅)) |
7 | subrgrcl 20509 | . . . . . 6 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
8 | asclply1subcl.3 | . . . . . . 7 ⊢ 𝑉 = (Poly1‘𝑅) | |
9 | 8 | ply1sca 22165 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑉)) |
10 | 1, 7, 9 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑉)) |
11 | 10 | fveq2d 6896 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑉))) |
12 | 6, 11 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Base‘(Scalar‘𝑉))) |
13 | asclply1subcl.1 | . . . 4 ⊢ 𝐴 = (algSc‘𝑉) | |
14 | eqid 2728 | . . . 4 ⊢ (Scalar‘𝑉) = (Scalar‘𝑉) | |
15 | eqid 2728 | . . . 4 ⊢ (Base‘(Scalar‘𝑉)) = (Base‘(Scalar‘𝑉)) | |
16 | eqid 2728 | . . . 4 ⊢ ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘𝑉) | |
17 | eqid 2728 | . . . 4 ⊢ (1r‘𝑉) = (1r‘𝑉) | |
18 | 13, 14, 15, 16, 17 | asclval 21807 | . . 3 ⊢ (𝑍 ∈ (Base‘(Scalar‘𝑉)) → (𝐴‘𝑍) = (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉))) |
19 | 12, 18 | syl 17 | . 2 ⊢ (𝜑 → (𝐴‘𝑍) = (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉))) |
20 | asclply1subcl.2 | . . . . . . 7 ⊢ 𝑈 = (𝑅 ↾s 𝑆) | |
21 | asclply1subcl.4 | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑈) | |
22 | asclply1subcl.5 | . . . . . . 7 ⊢ 𝑃 = (Base‘𝑊) | |
23 | 8, 20, 21, 22 | subrgply1 22145 | . . . . . 6 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑃 ∈ (SubRing‘𝑉)) |
24 | eqid 2728 | . . . . . . 7 ⊢ (𝑉 ↾s 𝑃) = (𝑉 ↾s 𝑃) | |
25 | 24, 16 | ressvsca 17319 | . . . . . 6 ⊢ (𝑃 ∈ (SubRing‘𝑉) → ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘(𝑉 ↾s 𝑃))) |
26 | 1, 23, 25 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘(𝑉 ↾s 𝑃))) |
27 | 26 | oveqd 7432 | . . . 4 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉)) = (𝑍( ·𝑠 ‘(𝑉 ↾s 𝑃))(1r‘𝑉))) |
28 | id 22 | . . . . 5 ⊢ (𝜑 → 𝜑) | |
29 | 17 | subrg1cl 20513 | . . . . . 6 ⊢ (𝑃 ∈ (SubRing‘𝑉) → (1r‘𝑉) ∈ 𝑃) |
30 | 1, 23, 29 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (1r‘𝑉) ∈ 𝑃) |
31 | 8, 20, 21, 22, 1, 24 | ressply1vsca 22144 | . . . . 5 ⊢ ((𝜑 ∧ (𝑍 ∈ 𝑆 ∧ (1r‘𝑉) ∈ 𝑃)) → (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉)) = (𝑍( ·𝑠 ‘(𝑉 ↾s 𝑃))(1r‘𝑉))) |
32 | 28, 5, 30, 31 | syl12anc 836 | . . . 4 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉)) = (𝑍( ·𝑠 ‘(𝑉 ↾s 𝑃))(1r‘𝑉))) |
33 | 27, 32 | eqtr4d 2771 | . . 3 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉)) = (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉))) |
34 | 20 | subrgring 20507 | . . . . 5 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑈 ∈ Ring) |
35 | 21 | ply1lmod 22164 | . . . . 5 ⊢ (𝑈 ∈ Ring → 𝑊 ∈ LMod) |
36 | 1, 34, 35 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
37 | 20, 2 | ressbas2 17212 | . . . . . 6 ⊢ (𝑆 ⊆ (Base‘𝑅) → 𝑆 = (Base‘𝑈)) |
38 | 1, 3, 37 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑆 = (Base‘𝑈)) |
39 | 5, 38 | eleqtrd 2831 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝑈)) |
40 | 20 | ovexi 7449 | . . . . . 6 ⊢ 𝑈 ∈ V |
41 | 21 | ply1sca 22165 | . . . . . 6 ⊢ (𝑈 ∈ V → 𝑈 = (Scalar‘𝑊)) |
42 | 40, 41 | ax-mp 5 | . . . . 5 ⊢ 𝑈 = (Scalar‘𝑊) |
43 | eqid 2728 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
44 | eqid 2728 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
45 | 22, 42, 43, 44 | lmodvscl 20755 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑍 ∈ (Base‘𝑈) ∧ (1r‘𝑉) ∈ 𝑃) → (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉)) ∈ 𝑃) |
46 | 36, 39, 30, 45 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉)) ∈ 𝑃) |
47 | 33, 46 | eqeltrd 2829 | . 2 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉)) ∈ 𝑃) |
48 | 19, 47 | eqeltrd 2829 | 1 ⊢ (𝜑 → (𝐴‘𝑍) ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ⊆ wss 3945 ‘cfv 6543 (class class class)co 7415 Basecbs 17174 ↾s cress 17203 Scalarcsca 17230 ·𝑠 cvsca 17231 1rcur 20115 Ringcrg 20167 SubRingcsubrg 20500 LModclmod 20737 algSccascl 21780 Poly1cpl1 22090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7680 df-ofr 7681 df-om 7866 df-1st 7988 df-2nd 7989 df-supp 8161 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-map 8841 df-pm 8842 df-ixp 8911 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-fsupp 9381 df-sup 9460 df-oi 9528 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-fz 13512 df-fzo 13655 df-seq 13994 df-hash 14317 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17417 df-gsum 17418 df-prds 17423 df-pws 17425 df-mre 17560 df-mrc 17561 df-acs 17563 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-mhm 18734 df-submnd 18735 df-grp 18887 df-minusg 18888 df-sbg 18889 df-mulg 19018 df-subg 19072 df-ghm 19162 df-cntz 19262 df-cmn 19731 df-abl 19732 df-mgp 20069 df-rng 20087 df-ur 20116 df-ring 20169 df-subrng 20477 df-subrg 20502 df-lmod 20739 df-lss 20810 df-ascl 21783 df-psr 21836 df-mpl 21838 df-opsr 21840 df-psr1 22093 df-ply1 22095 |
This theorem is referenced by: irngss 33356 evls1maprnss 33366 |
Copyright terms: Public domain | W3C validator |