MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclply1subcl Structured version   Visualization version   GIF version

Theorem asclply1subcl 22289
Description: Closure of the algebra scalar injection function in a polynomial on a subring. (Contributed by Thierry Arnoux, 5-Feb-2025.)
Hypotheses
Ref Expression
asclply1subcl.1 𝐴 = (algSc‘𝑉)
asclply1subcl.2 𝑈 = (𝑅s 𝑆)
asclply1subcl.3 𝑉 = (Poly1𝑅)
asclply1subcl.4 𝑊 = (Poly1𝑈)
asclply1subcl.5 𝑃 = (Base‘𝑊)
asclply1subcl.6 (𝜑𝑆 ∈ (SubRing‘𝑅))
asclply1subcl.7 (𝜑𝑍𝑆)
Assertion
Ref Expression
asclply1subcl (𝜑 → (𝐴𝑍) ∈ 𝑃)

Proof of Theorem asclply1subcl
StepHypRef Expression
1 asclply1subcl.6 . . . . . 6 (𝜑𝑆 ∈ (SubRing‘𝑅))
2 eqid 2731 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
32subrgss 20487 . . . . . 6 (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ (Base‘𝑅))
41, 3syl 17 . . . . 5 (𝜑𝑆 ⊆ (Base‘𝑅))
5 asclply1subcl.7 . . . . 5 (𝜑𝑍𝑆)
64, 5sseldd 3930 . . . 4 (𝜑𝑍 ∈ (Base‘𝑅))
7 subrgrcl 20491 . . . . . 6 (𝑆 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
8 asclply1subcl.3 . . . . . . 7 𝑉 = (Poly1𝑅)
98ply1sca 22165 . . . . . 6 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑉))
101, 7, 93syl 18 . . . . 5 (𝜑𝑅 = (Scalar‘𝑉))
1110fveq2d 6826 . . . 4 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑉)))
126, 11eleqtrd 2833 . . 3 (𝜑𝑍 ∈ (Base‘(Scalar‘𝑉)))
13 asclply1subcl.1 . . . 4 𝐴 = (algSc‘𝑉)
14 eqid 2731 . . . 4 (Scalar‘𝑉) = (Scalar‘𝑉)
15 eqid 2731 . . . 4 (Base‘(Scalar‘𝑉)) = (Base‘(Scalar‘𝑉))
16 eqid 2731 . . . 4 ( ·𝑠𝑉) = ( ·𝑠𝑉)
17 eqid 2731 . . . 4 (1r𝑉) = (1r𝑉)
1813, 14, 15, 16, 17asclval 21817 . . 3 (𝑍 ∈ (Base‘(Scalar‘𝑉)) → (𝐴𝑍) = (𝑍( ·𝑠𝑉)(1r𝑉)))
1912, 18syl 17 . 2 (𝜑 → (𝐴𝑍) = (𝑍( ·𝑠𝑉)(1r𝑉)))
20 asclply1subcl.2 . . . . . . 7 𝑈 = (𝑅s 𝑆)
21 asclply1subcl.4 . . . . . . 7 𝑊 = (Poly1𝑈)
22 asclply1subcl.5 . . . . . . 7 𝑃 = (Base‘𝑊)
238, 20, 21, 22subrgply1 22145 . . . . . 6 (𝑆 ∈ (SubRing‘𝑅) → 𝑃 ∈ (SubRing‘𝑉))
24 eqid 2731 . . . . . . 7 (𝑉s 𝑃) = (𝑉s 𝑃)
2524, 16ressvsca 17248 . . . . . 6 (𝑃 ∈ (SubRing‘𝑉) → ( ·𝑠𝑉) = ( ·𝑠 ‘(𝑉s 𝑃)))
261, 23, 253syl 18 . . . . 5 (𝜑 → ( ·𝑠𝑉) = ( ·𝑠 ‘(𝑉s 𝑃)))
2726oveqd 7363 . . . 4 (𝜑 → (𝑍( ·𝑠𝑉)(1r𝑉)) = (𝑍( ·𝑠 ‘(𝑉s 𝑃))(1r𝑉)))
28 id 22 . . . . 5 (𝜑𝜑)
2917subrg1cl 20495 . . . . . 6 (𝑃 ∈ (SubRing‘𝑉) → (1r𝑉) ∈ 𝑃)
301, 23, 293syl 18 . . . . 5 (𝜑 → (1r𝑉) ∈ 𝑃)
318, 20, 21, 22, 1, 24ressply1vsca 22144 . . . . 5 ((𝜑 ∧ (𝑍𝑆 ∧ (1r𝑉) ∈ 𝑃)) → (𝑍( ·𝑠𝑊)(1r𝑉)) = (𝑍( ·𝑠 ‘(𝑉s 𝑃))(1r𝑉)))
3228, 5, 30, 31syl12anc 836 . . . 4 (𝜑 → (𝑍( ·𝑠𝑊)(1r𝑉)) = (𝑍( ·𝑠 ‘(𝑉s 𝑃))(1r𝑉)))
3327, 32eqtr4d 2769 . . 3 (𝜑 → (𝑍( ·𝑠𝑉)(1r𝑉)) = (𝑍( ·𝑠𝑊)(1r𝑉)))
3420subrgring 20489 . . . . 5 (𝑆 ∈ (SubRing‘𝑅) → 𝑈 ∈ Ring)
3521ply1lmod 22164 . . . . 5 (𝑈 ∈ Ring → 𝑊 ∈ LMod)
361, 34, 353syl 18 . . . 4 (𝜑𝑊 ∈ LMod)
3720, 2ressbas2 17149 . . . . . 6 (𝑆 ⊆ (Base‘𝑅) → 𝑆 = (Base‘𝑈))
381, 3, 373syl 18 . . . . 5 (𝜑𝑆 = (Base‘𝑈))
395, 38eleqtrd 2833 . . . 4 (𝜑𝑍 ∈ (Base‘𝑈))
4020ovexi 7380 . . . . . 6 𝑈 ∈ V
4121ply1sca 22165 . . . . . 6 (𝑈 ∈ V → 𝑈 = (Scalar‘𝑊))
4240, 41ax-mp 5 . . . . 5 𝑈 = (Scalar‘𝑊)
43 eqid 2731 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
44 eqid 2731 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
4522, 42, 43, 44lmodvscl 20811 . . . 4 ((𝑊 ∈ LMod ∧ 𝑍 ∈ (Base‘𝑈) ∧ (1r𝑉) ∈ 𝑃) → (𝑍( ·𝑠𝑊)(1r𝑉)) ∈ 𝑃)
4636, 39, 30, 45syl3anc 1373 . . 3 (𝜑 → (𝑍( ·𝑠𝑊)(1r𝑉)) ∈ 𝑃)
4733, 46eqeltrd 2831 . 2 (𝜑 → (𝑍( ·𝑠𝑉)(1r𝑉)) ∈ 𝑃)
4819, 47eqeltrd 2831 1 (𝜑 → (𝐴𝑍) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  Scalarcsca 17164   ·𝑠 cvsca 17165  1rcur 20099  Ringcrg 20151  SubRingcsubrg 20484  LModclmod 20793  algSccascl 21789  Poly1cpl1 22089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-subrng 20461  df-subrg 20485  df-lmod 20795  df-lss 20865  df-ascl 21792  df-psr 21846  df-mpl 21848  df-opsr 21850  df-psr1 22092  df-ply1 22094
This theorem is referenced by:  evls1maprnss  22293  irngss  33700
  Copyright terms: Public domain W3C validator