![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > asclply1subcl | Structured version Visualization version GIF version |
Description: Closure of the algebra scalar injection function in a polynomial on a subring. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
Ref | Expression |
---|---|
asclply1subcl.1 | ⊢ 𝐴 = (algSc‘𝑉) |
asclply1subcl.2 | ⊢ 𝑈 = (𝑅 ↾s 𝑆) |
asclply1subcl.3 | ⊢ 𝑉 = (Poly1‘𝑅) |
asclply1subcl.4 | ⊢ 𝑊 = (Poly1‘𝑈) |
asclply1subcl.5 | ⊢ 𝑃 = (Base‘𝑊) |
asclply1subcl.6 | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
asclply1subcl.7 | ⊢ (𝜑 → 𝑍 ∈ 𝑆) |
Ref | Expression |
---|---|
asclply1subcl | ⊢ (𝜑 → (𝐴‘𝑍) ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclply1subcl.6 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
2 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 2 | subrgss 20589 | . . . . . 6 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ (Base‘𝑅)) |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑅)) |
5 | asclply1subcl.7 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑆) | |
6 | 4, 5 | sseldd 3996 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝑅)) |
7 | subrgrcl 20593 | . . . . . 6 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
8 | asclply1subcl.3 | . . . . . . 7 ⊢ 𝑉 = (Poly1‘𝑅) | |
9 | 8 | ply1sca 22270 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑉)) |
10 | 1, 7, 9 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑉)) |
11 | 10 | fveq2d 6911 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑉))) |
12 | 6, 11 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Base‘(Scalar‘𝑉))) |
13 | asclply1subcl.1 | . . . 4 ⊢ 𝐴 = (algSc‘𝑉) | |
14 | eqid 2735 | . . . 4 ⊢ (Scalar‘𝑉) = (Scalar‘𝑉) | |
15 | eqid 2735 | . . . 4 ⊢ (Base‘(Scalar‘𝑉)) = (Base‘(Scalar‘𝑉)) | |
16 | eqid 2735 | . . . 4 ⊢ ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘𝑉) | |
17 | eqid 2735 | . . . 4 ⊢ (1r‘𝑉) = (1r‘𝑉) | |
18 | 13, 14, 15, 16, 17 | asclval 21918 | . . 3 ⊢ (𝑍 ∈ (Base‘(Scalar‘𝑉)) → (𝐴‘𝑍) = (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉))) |
19 | 12, 18 | syl 17 | . 2 ⊢ (𝜑 → (𝐴‘𝑍) = (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉))) |
20 | asclply1subcl.2 | . . . . . . 7 ⊢ 𝑈 = (𝑅 ↾s 𝑆) | |
21 | asclply1subcl.4 | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑈) | |
22 | asclply1subcl.5 | . . . . . . 7 ⊢ 𝑃 = (Base‘𝑊) | |
23 | 8, 20, 21, 22 | subrgply1 22250 | . . . . . 6 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑃 ∈ (SubRing‘𝑉)) |
24 | eqid 2735 | . . . . . . 7 ⊢ (𝑉 ↾s 𝑃) = (𝑉 ↾s 𝑃) | |
25 | 24, 16 | ressvsca 17390 | . . . . . 6 ⊢ (𝑃 ∈ (SubRing‘𝑉) → ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘(𝑉 ↾s 𝑃))) |
26 | 1, 23, 25 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘(𝑉 ↾s 𝑃))) |
27 | 26 | oveqd 7448 | . . . 4 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉)) = (𝑍( ·𝑠 ‘(𝑉 ↾s 𝑃))(1r‘𝑉))) |
28 | id 22 | . . . . 5 ⊢ (𝜑 → 𝜑) | |
29 | 17 | subrg1cl 20597 | . . . . . 6 ⊢ (𝑃 ∈ (SubRing‘𝑉) → (1r‘𝑉) ∈ 𝑃) |
30 | 1, 23, 29 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (1r‘𝑉) ∈ 𝑃) |
31 | 8, 20, 21, 22, 1, 24 | ressply1vsca 22249 | . . . . 5 ⊢ ((𝜑 ∧ (𝑍 ∈ 𝑆 ∧ (1r‘𝑉) ∈ 𝑃)) → (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉)) = (𝑍( ·𝑠 ‘(𝑉 ↾s 𝑃))(1r‘𝑉))) |
32 | 28, 5, 30, 31 | syl12anc 837 | . . . 4 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉)) = (𝑍( ·𝑠 ‘(𝑉 ↾s 𝑃))(1r‘𝑉))) |
33 | 27, 32 | eqtr4d 2778 | . . 3 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉)) = (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉))) |
34 | 20 | subrgring 20591 | . . . . 5 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑈 ∈ Ring) |
35 | 21 | ply1lmod 22269 | . . . . 5 ⊢ (𝑈 ∈ Ring → 𝑊 ∈ LMod) |
36 | 1, 34, 35 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
37 | 20, 2 | ressbas2 17283 | . . . . . 6 ⊢ (𝑆 ⊆ (Base‘𝑅) → 𝑆 = (Base‘𝑈)) |
38 | 1, 3, 37 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑆 = (Base‘𝑈)) |
39 | 5, 38 | eleqtrd 2841 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝑈)) |
40 | 20 | ovexi 7465 | . . . . . 6 ⊢ 𝑈 ∈ V |
41 | 21 | ply1sca 22270 | . . . . . 6 ⊢ (𝑈 ∈ V → 𝑈 = (Scalar‘𝑊)) |
42 | 40, 41 | ax-mp 5 | . . . . 5 ⊢ 𝑈 = (Scalar‘𝑊) |
43 | eqid 2735 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
44 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
45 | 22, 42, 43, 44 | lmodvscl 20893 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑍 ∈ (Base‘𝑈) ∧ (1r‘𝑉) ∈ 𝑃) → (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉)) ∈ 𝑃) |
46 | 36, 39, 30, 45 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉)) ∈ 𝑃) |
47 | 33, 46 | eqeltrd 2839 | . 2 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉)) ∈ 𝑃) |
48 | 19, 47 | eqeltrd 2839 | 1 ⊢ (𝜑 → (𝐴‘𝑍) ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 ↾s cress 17274 Scalarcsca 17301 ·𝑠 cvsca 17302 1rcur 20199 Ringcrg 20251 SubRingcsubrg 20586 LModclmod 20875 algSccascl 21890 Poly1cpl1 22194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-ghm 19244 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-subrng 20563 df-subrg 20587 df-lmod 20877 df-lss 20948 df-ascl 21893 df-psr 21947 df-mpl 21949 df-opsr 21951 df-psr1 22197 df-ply1 22199 |
This theorem is referenced by: evls1maprnss 22398 irngss 33702 |
Copyright terms: Public domain | W3C validator |