| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asclply1subcl | Structured version Visualization version GIF version | ||
| Description: Closure of the algebra scalar injection function in a polynomial on a subring. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
| Ref | Expression |
|---|---|
| asclply1subcl.1 | ⊢ 𝐴 = (algSc‘𝑉) |
| asclply1subcl.2 | ⊢ 𝑈 = (𝑅 ↾s 𝑆) |
| asclply1subcl.3 | ⊢ 𝑉 = (Poly1‘𝑅) |
| asclply1subcl.4 | ⊢ 𝑊 = (Poly1‘𝑈) |
| asclply1subcl.5 | ⊢ 𝑃 = (Base‘𝑊) |
| asclply1subcl.6 | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
| asclply1subcl.7 | ⊢ (𝜑 → 𝑍 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| asclply1subcl | ⊢ (𝜑 → (𝐴‘𝑍) ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclply1subcl.6 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
| 2 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 2 | subrgss 20481 | . . . . . 6 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ (Base‘𝑅)) |
| 4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑅)) |
| 5 | asclply1subcl.7 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑆) | |
| 6 | 4, 5 | sseldd 3947 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝑅)) |
| 7 | subrgrcl 20485 | . . . . . 6 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 8 | asclply1subcl.3 | . . . . . . 7 ⊢ 𝑉 = (Poly1‘𝑅) | |
| 9 | 8 | ply1sca 22137 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑉)) |
| 10 | 1, 7, 9 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑉)) |
| 11 | 10 | fveq2d 6862 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑉))) |
| 12 | 6, 11 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Base‘(Scalar‘𝑉))) |
| 13 | asclply1subcl.1 | . . . 4 ⊢ 𝐴 = (algSc‘𝑉) | |
| 14 | eqid 2729 | . . . 4 ⊢ (Scalar‘𝑉) = (Scalar‘𝑉) | |
| 15 | eqid 2729 | . . . 4 ⊢ (Base‘(Scalar‘𝑉)) = (Base‘(Scalar‘𝑉)) | |
| 16 | eqid 2729 | . . . 4 ⊢ ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘𝑉) | |
| 17 | eqid 2729 | . . . 4 ⊢ (1r‘𝑉) = (1r‘𝑉) | |
| 18 | 13, 14, 15, 16, 17 | asclval 21789 | . . 3 ⊢ (𝑍 ∈ (Base‘(Scalar‘𝑉)) → (𝐴‘𝑍) = (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉))) |
| 19 | 12, 18 | syl 17 | . 2 ⊢ (𝜑 → (𝐴‘𝑍) = (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉))) |
| 20 | asclply1subcl.2 | . . . . . . 7 ⊢ 𝑈 = (𝑅 ↾s 𝑆) | |
| 21 | asclply1subcl.4 | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑈) | |
| 22 | asclply1subcl.5 | . . . . . . 7 ⊢ 𝑃 = (Base‘𝑊) | |
| 23 | 8, 20, 21, 22 | subrgply1 22117 | . . . . . 6 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑃 ∈ (SubRing‘𝑉)) |
| 24 | eqid 2729 | . . . . . . 7 ⊢ (𝑉 ↾s 𝑃) = (𝑉 ↾s 𝑃) | |
| 25 | 24, 16 | ressvsca 17307 | . . . . . 6 ⊢ (𝑃 ∈ (SubRing‘𝑉) → ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘(𝑉 ↾s 𝑃))) |
| 26 | 1, 23, 25 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘(𝑉 ↾s 𝑃))) |
| 27 | 26 | oveqd 7404 | . . . 4 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉)) = (𝑍( ·𝑠 ‘(𝑉 ↾s 𝑃))(1r‘𝑉))) |
| 28 | id 22 | . . . . 5 ⊢ (𝜑 → 𝜑) | |
| 29 | 17 | subrg1cl 20489 | . . . . . 6 ⊢ (𝑃 ∈ (SubRing‘𝑉) → (1r‘𝑉) ∈ 𝑃) |
| 30 | 1, 23, 29 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (1r‘𝑉) ∈ 𝑃) |
| 31 | 8, 20, 21, 22, 1, 24 | ressply1vsca 22116 | . . . . 5 ⊢ ((𝜑 ∧ (𝑍 ∈ 𝑆 ∧ (1r‘𝑉) ∈ 𝑃)) → (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉)) = (𝑍( ·𝑠 ‘(𝑉 ↾s 𝑃))(1r‘𝑉))) |
| 32 | 28, 5, 30, 31 | syl12anc 836 | . . . 4 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉)) = (𝑍( ·𝑠 ‘(𝑉 ↾s 𝑃))(1r‘𝑉))) |
| 33 | 27, 32 | eqtr4d 2767 | . . 3 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉)) = (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉))) |
| 34 | 20 | subrgring 20483 | . . . . 5 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑈 ∈ Ring) |
| 35 | 21 | ply1lmod 22136 | . . . . 5 ⊢ (𝑈 ∈ Ring → 𝑊 ∈ LMod) |
| 36 | 1, 34, 35 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 37 | 20, 2 | ressbas2 17208 | . . . . . 6 ⊢ (𝑆 ⊆ (Base‘𝑅) → 𝑆 = (Base‘𝑈)) |
| 38 | 1, 3, 37 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑆 = (Base‘𝑈)) |
| 39 | 5, 38 | eleqtrd 2830 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝑈)) |
| 40 | 20 | ovexi 7421 | . . . . . 6 ⊢ 𝑈 ∈ V |
| 41 | 21 | ply1sca 22137 | . . . . . 6 ⊢ (𝑈 ∈ V → 𝑈 = (Scalar‘𝑊)) |
| 42 | 40, 41 | ax-mp 5 | . . . . 5 ⊢ 𝑈 = (Scalar‘𝑊) |
| 43 | eqid 2729 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 44 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 45 | 22, 42, 43, 44 | lmodvscl 20784 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑍 ∈ (Base‘𝑈) ∧ (1r‘𝑉) ∈ 𝑃) → (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉)) ∈ 𝑃) |
| 46 | 36, 39, 30, 45 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉)) ∈ 𝑃) |
| 47 | 33, 46 | eqeltrd 2828 | . 2 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉)) ∈ 𝑃) |
| 48 | 19, 47 | eqeltrd 2828 | 1 ⊢ (𝜑 → (𝐴‘𝑍) ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 Scalarcsca 17223 ·𝑠 cvsca 17224 1rcur 20090 Ringcrg 20142 SubRingcsubrg 20478 LModclmod 20766 algSccascl 21761 Poly1cpl1 22061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-subrng 20455 df-subrg 20479 df-lmod 20768 df-lss 20838 df-ascl 21764 df-psr 21818 df-mpl 21820 df-opsr 21822 df-psr1 22064 df-ply1 22066 |
| This theorem is referenced by: evls1maprnss 22265 irngss 33682 |
| Copyright terms: Public domain | W3C validator |