Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  asclply1subcl Structured version   Visualization version   GIF version

Theorem asclply1subcl 33252
Description: Closure of the algebra scalar injection function in a polynomial on a subring. (Contributed by Thierry Arnoux, 5-Feb-2025.)
Hypotheses
Ref Expression
asclply1subcl.1 𝐴 = (algSc‘𝑉)
asclply1subcl.2 𝑈 = (𝑅s 𝑆)
asclply1subcl.3 𝑉 = (Poly1𝑅)
asclply1subcl.4 𝑊 = (Poly1𝑈)
asclply1subcl.5 𝑃 = (Base‘𝑊)
asclply1subcl.6 (𝜑𝑆 ∈ (SubRing‘𝑅))
asclply1subcl.7 (𝜑𝑍𝑆)
Assertion
Ref Expression
asclply1subcl (𝜑 → (𝐴𝑍) ∈ 𝑃)

Proof of Theorem asclply1subcl
StepHypRef Expression
1 asclply1subcl.6 . . . . . 6 (𝜑𝑆 ∈ (SubRing‘𝑅))
2 eqid 2728 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
32subrgss 20505 . . . . . 6 (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ (Base‘𝑅))
41, 3syl 17 . . . . 5 (𝜑𝑆 ⊆ (Base‘𝑅))
5 asclply1subcl.7 . . . . 5 (𝜑𝑍𝑆)
64, 5sseldd 3980 . . . 4 (𝜑𝑍 ∈ (Base‘𝑅))
7 subrgrcl 20509 . . . . . 6 (𝑆 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
8 asclply1subcl.3 . . . . . . 7 𝑉 = (Poly1𝑅)
98ply1sca 22165 . . . . . 6 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑉))
101, 7, 93syl 18 . . . . 5 (𝜑𝑅 = (Scalar‘𝑉))
1110fveq2d 6896 . . . 4 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑉)))
126, 11eleqtrd 2831 . . 3 (𝜑𝑍 ∈ (Base‘(Scalar‘𝑉)))
13 asclply1subcl.1 . . . 4 𝐴 = (algSc‘𝑉)
14 eqid 2728 . . . 4 (Scalar‘𝑉) = (Scalar‘𝑉)
15 eqid 2728 . . . 4 (Base‘(Scalar‘𝑉)) = (Base‘(Scalar‘𝑉))
16 eqid 2728 . . . 4 ( ·𝑠𝑉) = ( ·𝑠𝑉)
17 eqid 2728 . . . 4 (1r𝑉) = (1r𝑉)
1813, 14, 15, 16, 17asclval 21807 . . 3 (𝑍 ∈ (Base‘(Scalar‘𝑉)) → (𝐴𝑍) = (𝑍( ·𝑠𝑉)(1r𝑉)))
1912, 18syl 17 . 2 (𝜑 → (𝐴𝑍) = (𝑍( ·𝑠𝑉)(1r𝑉)))
20 asclply1subcl.2 . . . . . . 7 𝑈 = (𝑅s 𝑆)
21 asclply1subcl.4 . . . . . . 7 𝑊 = (Poly1𝑈)
22 asclply1subcl.5 . . . . . . 7 𝑃 = (Base‘𝑊)
238, 20, 21, 22subrgply1 22145 . . . . . 6 (𝑆 ∈ (SubRing‘𝑅) → 𝑃 ∈ (SubRing‘𝑉))
24 eqid 2728 . . . . . . 7 (𝑉s 𝑃) = (𝑉s 𝑃)
2524, 16ressvsca 17319 . . . . . 6 (𝑃 ∈ (SubRing‘𝑉) → ( ·𝑠𝑉) = ( ·𝑠 ‘(𝑉s 𝑃)))
261, 23, 253syl 18 . . . . 5 (𝜑 → ( ·𝑠𝑉) = ( ·𝑠 ‘(𝑉s 𝑃)))
2726oveqd 7432 . . . 4 (𝜑 → (𝑍( ·𝑠𝑉)(1r𝑉)) = (𝑍( ·𝑠 ‘(𝑉s 𝑃))(1r𝑉)))
28 id 22 . . . . 5 (𝜑𝜑)
2917subrg1cl 20513 . . . . . 6 (𝑃 ∈ (SubRing‘𝑉) → (1r𝑉) ∈ 𝑃)
301, 23, 293syl 18 . . . . 5 (𝜑 → (1r𝑉) ∈ 𝑃)
318, 20, 21, 22, 1, 24ressply1vsca 22144 . . . . 5 ((𝜑 ∧ (𝑍𝑆 ∧ (1r𝑉) ∈ 𝑃)) → (𝑍( ·𝑠𝑊)(1r𝑉)) = (𝑍( ·𝑠 ‘(𝑉s 𝑃))(1r𝑉)))
3228, 5, 30, 31syl12anc 836 . . . 4 (𝜑 → (𝑍( ·𝑠𝑊)(1r𝑉)) = (𝑍( ·𝑠 ‘(𝑉s 𝑃))(1r𝑉)))
3327, 32eqtr4d 2771 . . 3 (𝜑 → (𝑍( ·𝑠𝑉)(1r𝑉)) = (𝑍( ·𝑠𝑊)(1r𝑉)))
3420subrgring 20507 . . . . 5 (𝑆 ∈ (SubRing‘𝑅) → 𝑈 ∈ Ring)
3521ply1lmod 22164 . . . . 5 (𝑈 ∈ Ring → 𝑊 ∈ LMod)
361, 34, 353syl 18 . . . 4 (𝜑𝑊 ∈ LMod)
3720, 2ressbas2 17212 . . . . . 6 (𝑆 ⊆ (Base‘𝑅) → 𝑆 = (Base‘𝑈))
381, 3, 373syl 18 . . . . 5 (𝜑𝑆 = (Base‘𝑈))
395, 38eleqtrd 2831 . . . 4 (𝜑𝑍 ∈ (Base‘𝑈))
4020ovexi 7449 . . . . . 6 𝑈 ∈ V
4121ply1sca 22165 . . . . . 6 (𝑈 ∈ V → 𝑈 = (Scalar‘𝑊))
4240, 41ax-mp 5 . . . . 5 𝑈 = (Scalar‘𝑊)
43 eqid 2728 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
44 eqid 2728 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
4522, 42, 43, 44lmodvscl 20755 . . . 4 ((𝑊 ∈ LMod ∧ 𝑍 ∈ (Base‘𝑈) ∧ (1r𝑉) ∈ 𝑃) → (𝑍( ·𝑠𝑊)(1r𝑉)) ∈ 𝑃)
4636, 39, 30, 45syl3anc 1369 . . 3 (𝜑 → (𝑍( ·𝑠𝑊)(1r𝑉)) ∈ 𝑃)
4733, 46eqeltrd 2829 . 2 (𝜑 → (𝑍( ·𝑠𝑉)(1r𝑉)) ∈ 𝑃)
4819, 47eqeltrd 2829 1 (𝜑 → (𝐴𝑍) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3470  wss 3945  cfv 6543  (class class class)co 7415  Basecbs 17174  s cress 17203  Scalarcsca 17230   ·𝑠 cvsca 17231  1rcur 20115  Ringcrg 20167  SubRingcsubrg 20500  LModclmod 20737  algSccascl 21780  Poly1cpl1 22090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-iin 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7680  df-ofr 7681  df-om 7866  df-1st 7988  df-2nd 7989  df-supp 8161  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-er 8719  df-map 8841  df-pm 8842  df-ixp 8911  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-fsupp 9381  df-sup 9460  df-oi 9528  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-dec 12703  df-uz 12848  df-fz 13512  df-fzo 13655  df-seq 13994  df-hash 14317  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17417  df-gsum 17418  df-prds 17423  df-pws 17425  df-mre 17560  df-mrc 17561  df-acs 17563  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-mhm 18734  df-submnd 18735  df-grp 18887  df-minusg 18888  df-sbg 18889  df-mulg 19018  df-subg 19072  df-ghm 19162  df-cntz 19262  df-cmn 19731  df-abl 19732  df-mgp 20069  df-rng 20087  df-ur 20116  df-ring 20169  df-subrng 20477  df-subrg 20502  df-lmod 20739  df-lss 20810  df-ascl 21783  df-psr 21836  df-mpl 21838  df-opsr 21840  df-psr1 22093  df-ply1 22095
This theorem is referenced by:  irngss  33356  evls1maprnss  33366
  Copyright terms: Public domain W3C validator