|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > asclply1subcl | Structured version Visualization version GIF version | ||
| Description: Closure of the algebra scalar injection function in a polynomial on a subring. (Contributed by Thierry Arnoux, 5-Feb-2025.) | 
| Ref | Expression | 
|---|---|
| asclply1subcl.1 | ⊢ 𝐴 = (algSc‘𝑉) | 
| asclply1subcl.2 | ⊢ 𝑈 = (𝑅 ↾s 𝑆) | 
| asclply1subcl.3 | ⊢ 𝑉 = (Poly1‘𝑅) | 
| asclply1subcl.4 | ⊢ 𝑊 = (Poly1‘𝑈) | 
| asclply1subcl.5 | ⊢ 𝑃 = (Base‘𝑊) | 
| asclply1subcl.6 | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | 
| asclply1subcl.7 | ⊢ (𝜑 → 𝑍 ∈ 𝑆) | 
| Ref | Expression | 
|---|---|
| asclply1subcl | ⊢ (𝜑 → (𝐴‘𝑍) ∈ 𝑃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | asclply1subcl.6 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
| 2 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 2 | subrgss 20573 | . . . . . 6 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ (Base‘𝑅)) | 
| 4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑅)) | 
| 5 | asclply1subcl.7 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑆) | |
| 6 | 4, 5 | sseldd 3983 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝑅)) | 
| 7 | subrgrcl 20577 | . . . . . 6 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 8 | asclply1subcl.3 | . . . . . . 7 ⊢ 𝑉 = (Poly1‘𝑅) | |
| 9 | 8 | ply1sca 22255 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑉)) | 
| 10 | 1, 7, 9 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑉)) | 
| 11 | 10 | fveq2d 6909 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑉))) | 
| 12 | 6, 11 | eleqtrd 2842 | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Base‘(Scalar‘𝑉))) | 
| 13 | asclply1subcl.1 | . . . 4 ⊢ 𝐴 = (algSc‘𝑉) | |
| 14 | eqid 2736 | . . . 4 ⊢ (Scalar‘𝑉) = (Scalar‘𝑉) | |
| 15 | eqid 2736 | . . . 4 ⊢ (Base‘(Scalar‘𝑉)) = (Base‘(Scalar‘𝑉)) | |
| 16 | eqid 2736 | . . . 4 ⊢ ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘𝑉) | |
| 17 | eqid 2736 | . . . 4 ⊢ (1r‘𝑉) = (1r‘𝑉) | |
| 18 | 13, 14, 15, 16, 17 | asclval 21901 | . . 3 ⊢ (𝑍 ∈ (Base‘(Scalar‘𝑉)) → (𝐴‘𝑍) = (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉))) | 
| 19 | 12, 18 | syl 17 | . 2 ⊢ (𝜑 → (𝐴‘𝑍) = (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉))) | 
| 20 | asclply1subcl.2 | . . . . . . 7 ⊢ 𝑈 = (𝑅 ↾s 𝑆) | |
| 21 | asclply1subcl.4 | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑈) | |
| 22 | asclply1subcl.5 | . . . . . . 7 ⊢ 𝑃 = (Base‘𝑊) | |
| 23 | 8, 20, 21, 22 | subrgply1 22235 | . . . . . 6 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑃 ∈ (SubRing‘𝑉)) | 
| 24 | eqid 2736 | . . . . . . 7 ⊢ (𝑉 ↾s 𝑃) = (𝑉 ↾s 𝑃) | |
| 25 | 24, 16 | ressvsca 17389 | . . . . . 6 ⊢ (𝑃 ∈ (SubRing‘𝑉) → ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘(𝑉 ↾s 𝑃))) | 
| 26 | 1, 23, 25 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘(𝑉 ↾s 𝑃))) | 
| 27 | 26 | oveqd 7449 | . . . 4 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉)) = (𝑍( ·𝑠 ‘(𝑉 ↾s 𝑃))(1r‘𝑉))) | 
| 28 | id 22 | . . . . 5 ⊢ (𝜑 → 𝜑) | |
| 29 | 17 | subrg1cl 20581 | . . . . . 6 ⊢ (𝑃 ∈ (SubRing‘𝑉) → (1r‘𝑉) ∈ 𝑃) | 
| 30 | 1, 23, 29 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (1r‘𝑉) ∈ 𝑃) | 
| 31 | 8, 20, 21, 22, 1, 24 | ressply1vsca 22234 | . . . . 5 ⊢ ((𝜑 ∧ (𝑍 ∈ 𝑆 ∧ (1r‘𝑉) ∈ 𝑃)) → (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉)) = (𝑍( ·𝑠 ‘(𝑉 ↾s 𝑃))(1r‘𝑉))) | 
| 32 | 28, 5, 30, 31 | syl12anc 836 | . . . 4 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉)) = (𝑍( ·𝑠 ‘(𝑉 ↾s 𝑃))(1r‘𝑉))) | 
| 33 | 27, 32 | eqtr4d 2779 | . . 3 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉)) = (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉))) | 
| 34 | 20 | subrgring 20575 | . . . . 5 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑈 ∈ Ring) | 
| 35 | 21 | ply1lmod 22254 | . . . . 5 ⊢ (𝑈 ∈ Ring → 𝑊 ∈ LMod) | 
| 36 | 1, 34, 35 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | 
| 37 | 20, 2 | ressbas2 17284 | . . . . . 6 ⊢ (𝑆 ⊆ (Base‘𝑅) → 𝑆 = (Base‘𝑈)) | 
| 38 | 1, 3, 37 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑆 = (Base‘𝑈)) | 
| 39 | 5, 38 | eleqtrd 2842 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝑈)) | 
| 40 | 20 | ovexi 7466 | . . . . . 6 ⊢ 𝑈 ∈ V | 
| 41 | 21 | ply1sca 22255 | . . . . . 6 ⊢ (𝑈 ∈ V → 𝑈 = (Scalar‘𝑊)) | 
| 42 | 40, 41 | ax-mp 5 | . . . . 5 ⊢ 𝑈 = (Scalar‘𝑊) | 
| 43 | eqid 2736 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 44 | eqid 2736 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 45 | 22, 42, 43, 44 | lmodvscl 20877 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑍 ∈ (Base‘𝑈) ∧ (1r‘𝑉) ∈ 𝑃) → (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉)) ∈ 𝑃) | 
| 46 | 36, 39, 30, 45 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉)) ∈ 𝑃) | 
| 47 | 33, 46 | eqeltrd 2840 | . 2 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉)) ∈ 𝑃) | 
| 48 | 19, 47 | eqeltrd 2840 | 1 ⊢ (𝜑 → (𝐴‘𝑍) ∈ 𝑃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ⊆ wss 3950 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 ↾s cress 17275 Scalarcsca 17301 ·𝑠 cvsca 17302 1rcur 20179 Ringcrg 20231 SubRingcsubrg 20570 LModclmod 20859 algSccascl 21873 Poly1cpl1 22179 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-ofr 7699 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-pm 8870 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-sup 9483 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-fzo 13696 df-seq 14044 df-hash 14371 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17487 df-gsum 17488 df-prds 17493 df-pws 17495 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18797 df-submnd 18798 df-grp 18955 df-minusg 18956 df-sbg 18957 df-mulg 19087 df-subg 19142 df-ghm 19232 df-cntz 19336 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-subrng 20547 df-subrg 20571 df-lmod 20861 df-lss 20931 df-ascl 21876 df-psr 21930 df-mpl 21932 df-opsr 21934 df-psr1 22182 df-ply1 22184 | 
| This theorem is referenced by: evls1maprnss 22383 irngss 33738 | 
| Copyright terms: Public domain | W3C validator |