MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclply1subcl Structured version   Visualization version   GIF version

Theorem asclply1subcl 22394
Description: Closure of the algebra scalar injection function in a polynomial on a subring. (Contributed by Thierry Arnoux, 5-Feb-2025.)
Hypotheses
Ref Expression
asclply1subcl.1 𝐴 = (algSc‘𝑉)
asclply1subcl.2 𝑈 = (𝑅s 𝑆)
asclply1subcl.3 𝑉 = (Poly1𝑅)
asclply1subcl.4 𝑊 = (Poly1𝑈)
asclply1subcl.5 𝑃 = (Base‘𝑊)
asclply1subcl.6 (𝜑𝑆 ∈ (SubRing‘𝑅))
asclply1subcl.7 (𝜑𝑍𝑆)
Assertion
Ref Expression
asclply1subcl (𝜑 → (𝐴𝑍) ∈ 𝑃)

Proof of Theorem asclply1subcl
StepHypRef Expression
1 asclply1subcl.6 . . . . . 6 (𝜑𝑆 ∈ (SubRing‘𝑅))
2 eqid 2735 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
32subrgss 20589 . . . . . 6 (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ (Base‘𝑅))
41, 3syl 17 . . . . 5 (𝜑𝑆 ⊆ (Base‘𝑅))
5 asclply1subcl.7 . . . . 5 (𝜑𝑍𝑆)
64, 5sseldd 3996 . . . 4 (𝜑𝑍 ∈ (Base‘𝑅))
7 subrgrcl 20593 . . . . . 6 (𝑆 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
8 asclply1subcl.3 . . . . . . 7 𝑉 = (Poly1𝑅)
98ply1sca 22270 . . . . . 6 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑉))
101, 7, 93syl 18 . . . . 5 (𝜑𝑅 = (Scalar‘𝑉))
1110fveq2d 6911 . . . 4 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑉)))
126, 11eleqtrd 2841 . . 3 (𝜑𝑍 ∈ (Base‘(Scalar‘𝑉)))
13 asclply1subcl.1 . . . 4 𝐴 = (algSc‘𝑉)
14 eqid 2735 . . . 4 (Scalar‘𝑉) = (Scalar‘𝑉)
15 eqid 2735 . . . 4 (Base‘(Scalar‘𝑉)) = (Base‘(Scalar‘𝑉))
16 eqid 2735 . . . 4 ( ·𝑠𝑉) = ( ·𝑠𝑉)
17 eqid 2735 . . . 4 (1r𝑉) = (1r𝑉)
1813, 14, 15, 16, 17asclval 21918 . . 3 (𝑍 ∈ (Base‘(Scalar‘𝑉)) → (𝐴𝑍) = (𝑍( ·𝑠𝑉)(1r𝑉)))
1912, 18syl 17 . 2 (𝜑 → (𝐴𝑍) = (𝑍( ·𝑠𝑉)(1r𝑉)))
20 asclply1subcl.2 . . . . . . 7 𝑈 = (𝑅s 𝑆)
21 asclply1subcl.4 . . . . . . 7 𝑊 = (Poly1𝑈)
22 asclply1subcl.5 . . . . . . 7 𝑃 = (Base‘𝑊)
238, 20, 21, 22subrgply1 22250 . . . . . 6 (𝑆 ∈ (SubRing‘𝑅) → 𝑃 ∈ (SubRing‘𝑉))
24 eqid 2735 . . . . . . 7 (𝑉s 𝑃) = (𝑉s 𝑃)
2524, 16ressvsca 17390 . . . . . 6 (𝑃 ∈ (SubRing‘𝑉) → ( ·𝑠𝑉) = ( ·𝑠 ‘(𝑉s 𝑃)))
261, 23, 253syl 18 . . . . 5 (𝜑 → ( ·𝑠𝑉) = ( ·𝑠 ‘(𝑉s 𝑃)))
2726oveqd 7448 . . . 4 (𝜑 → (𝑍( ·𝑠𝑉)(1r𝑉)) = (𝑍( ·𝑠 ‘(𝑉s 𝑃))(1r𝑉)))
28 id 22 . . . . 5 (𝜑𝜑)
2917subrg1cl 20597 . . . . . 6 (𝑃 ∈ (SubRing‘𝑉) → (1r𝑉) ∈ 𝑃)
301, 23, 293syl 18 . . . . 5 (𝜑 → (1r𝑉) ∈ 𝑃)
318, 20, 21, 22, 1, 24ressply1vsca 22249 . . . . 5 ((𝜑 ∧ (𝑍𝑆 ∧ (1r𝑉) ∈ 𝑃)) → (𝑍( ·𝑠𝑊)(1r𝑉)) = (𝑍( ·𝑠 ‘(𝑉s 𝑃))(1r𝑉)))
3228, 5, 30, 31syl12anc 837 . . . 4 (𝜑 → (𝑍( ·𝑠𝑊)(1r𝑉)) = (𝑍( ·𝑠 ‘(𝑉s 𝑃))(1r𝑉)))
3327, 32eqtr4d 2778 . . 3 (𝜑 → (𝑍( ·𝑠𝑉)(1r𝑉)) = (𝑍( ·𝑠𝑊)(1r𝑉)))
3420subrgring 20591 . . . . 5 (𝑆 ∈ (SubRing‘𝑅) → 𝑈 ∈ Ring)
3521ply1lmod 22269 . . . . 5 (𝑈 ∈ Ring → 𝑊 ∈ LMod)
361, 34, 353syl 18 . . . 4 (𝜑𝑊 ∈ LMod)
3720, 2ressbas2 17283 . . . . . 6 (𝑆 ⊆ (Base‘𝑅) → 𝑆 = (Base‘𝑈))
381, 3, 373syl 18 . . . . 5 (𝜑𝑆 = (Base‘𝑈))
395, 38eleqtrd 2841 . . . 4 (𝜑𝑍 ∈ (Base‘𝑈))
4020ovexi 7465 . . . . . 6 𝑈 ∈ V
4121ply1sca 22270 . . . . . 6 (𝑈 ∈ V → 𝑈 = (Scalar‘𝑊))
4240, 41ax-mp 5 . . . . 5 𝑈 = (Scalar‘𝑊)
43 eqid 2735 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
44 eqid 2735 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
4522, 42, 43, 44lmodvscl 20893 . . . 4 ((𝑊 ∈ LMod ∧ 𝑍 ∈ (Base‘𝑈) ∧ (1r𝑉) ∈ 𝑃) → (𝑍( ·𝑠𝑊)(1r𝑉)) ∈ 𝑃)
4636, 39, 30, 45syl3anc 1370 . . 3 (𝜑 → (𝑍( ·𝑠𝑊)(1r𝑉)) ∈ 𝑃)
4733, 46eqeltrd 2839 . 2 (𝜑 → (𝑍( ·𝑠𝑉)(1r𝑉)) ∈ 𝑃)
4819, 47eqeltrd 2839 1 (𝜑 → (𝐴𝑍) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963  cfv 6563  (class class class)co 7431  Basecbs 17245  s cress 17274  Scalarcsca 17301   ·𝑠 cvsca 17302  1rcur 20199  Ringcrg 20251  SubRingcsubrg 20586  LModclmod 20875  algSccascl 21890  Poly1cpl1 22194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-subrng 20563  df-subrg 20587  df-lmod 20877  df-lss 20948  df-ascl 21893  df-psr 21947  df-mpl 21949  df-opsr 21951  df-psr1 22197  df-ply1 22199
This theorem is referenced by:  evls1maprnss  22398  irngss  33702
  Copyright terms: Public domain W3C validator