| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asclply1subcl | Structured version Visualization version GIF version | ||
| Description: Closure of the algebra scalar injection function in a polynomial on a subring. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
| Ref | Expression |
|---|---|
| asclply1subcl.1 | ⊢ 𝐴 = (algSc‘𝑉) |
| asclply1subcl.2 | ⊢ 𝑈 = (𝑅 ↾s 𝑆) |
| asclply1subcl.3 | ⊢ 𝑉 = (Poly1‘𝑅) |
| asclply1subcl.4 | ⊢ 𝑊 = (Poly1‘𝑈) |
| asclply1subcl.5 | ⊢ 𝑃 = (Base‘𝑊) |
| asclply1subcl.6 | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
| asclply1subcl.7 | ⊢ (𝜑 → 𝑍 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| asclply1subcl | ⊢ (𝜑 → (𝐴‘𝑍) ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclply1subcl.6 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
| 2 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 2 | subrgss 20487 | . . . . . 6 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ (Base‘𝑅)) |
| 4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑅)) |
| 5 | asclply1subcl.7 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑆) | |
| 6 | 4, 5 | sseldd 3930 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝑅)) |
| 7 | subrgrcl 20491 | . . . . . 6 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 8 | asclply1subcl.3 | . . . . . . 7 ⊢ 𝑉 = (Poly1‘𝑅) | |
| 9 | 8 | ply1sca 22165 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑉)) |
| 10 | 1, 7, 9 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑉)) |
| 11 | 10 | fveq2d 6826 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑉))) |
| 12 | 6, 11 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Base‘(Scalar‘𝑉))) |
| 13 | asclply1subcl.1 | . . . 4 ⊢ 𝐴 = (algSc‘𝑉) | |
| 14 | eqid 2731 | . . . 4 ⊢ (Scalar‘𝑉) = (Scalar‘𝑉) | |
| 15 | eqid 2731 | . . . 4 ⊢ (Base‘(Scalar‘𝑉)) = (Base‘(Scalar‘𝑉)) | |
| 16 | eqid 2731 | . . . 4 ⊢ ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘𝑉) | |
| 17 | eqid 2731 | . . . 4 ⊢ (1r‘𝑉) = (1r‘𝑉) | |
| 18 | 13, 14, 15, 16, 17 | asclval 21817 | . . 3 ⊢ (𝑍 ∈ (Base‘(Scalar‘𝑉)) → (𝐴‘𝑍) = (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉))) |
| 19 | 12, 18 | syl 17 | . 2 ⊢ (𝜑 → (𝐴‘𝑍) = (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉))) |
| 20 | asclply1subcl.2 | . . . . . . 7 ⊢ 𝑈 = (𝑅 ↾s 𝑆) | |
| 21 | asclply1subcl.4 | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑈) | |
| 22 | asclply1subcl.5 | . . . . . . 7 ⊢ 𝑃 = (Base‘𝑊) | |
| 23 | 8, 20, 21, 22 | subrgply1 22145 | . . . . . 6 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑃 ∈ (SubRing‘𝑉)) |
| 24 | eqid 2731 | . . . . . . 7 ⊢ (𝑉 ↾s 𝑃) = (𝑉 ↾s 𝑃) | |
| 25 | 24, 16 | ressvsca 17248 | . . . . . 6 ⊢ (𝑃 ∈ (SubRing‘𝑉) → ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘(𝑉 ↾s 𝑃))) |
| 26 | 1, 23, 25 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘(𝑉 ↾s 𝑃))) |
| 27 | 26 | oveqd 7363 | . . . 4 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉)) = (𝑍( ·𝑠 ‘(𝑉 ↾s 𝑃))(1r‘𝑉))) |
| 28 | id 22 | . . . . 5 ⊢ (𝜑 → 𝜑) | |
| 29 | 17 | subrg1cl 20495 | . . . . . 6 ⊢ (𝑃 ∈ (SubRing‘𝑉) → (1r‘𝑉) ∈ 𝑃) |
| 30 | 1, 23, 29 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (1r‘𝑉) ∈ 𝑃) |
| 31 | 8, 20, 21, 22, 1, 24 | ressply1vsca 22144 | . . . . 5 ⊢ ((𝜑 ∧ (𝑍 ∈ 𝑆 ∧ (1r‘𝑉) ∈ 𝑃)) → (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉)) = (𝑍( ·𝑠 ‘(𝑉 ↾s 𝑃))(1r‘𝑉))) |
| 32 | 28, 5, 30, 31 | syl12anc 836 | . . . 4 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉)) = (𝑍( ·𝑠 ‘(𝑉 ↾s 𝑃))(1r‘𝑉))) |
| 33 | 27, 32 | eqtr4d 2769 | . . 3 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉)) = (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉))) |
| 34 | 20 | subrgring 20489 | . . . . 5 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑈 ∈ Ring) |
| 35 | 21 | ply1lmod 22164 | . . . . 5 ⊢ (𝑈 ∈ Ring → 𝑊 ∈ LMod) |
| 36 | 1, 34, 35 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 37 | 20, 2 | ressbas2 17149 | . . . . . 6 ⊢ (𝑆 ⊆ (Base‘𝑅) → 𝑆 = (Base‘𝑈)) |
| 38 | 1, 3, 37 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑆 = (Base‘𝑈)) |
| 39 | 5, 38 | eleqtrd 2833 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝑈)) |
| 40 | 20 | ovexi 7380 | . . . . . 6 ⊢ 𝑈 ∈ V |
| 41 | 21 | ply1sca 22165 | . . . . . 6 ⊢ (𝑈 ∈ V → 𝑈 = (Scalar‘𝑊)) |
| 42 | 40, 41 | ax-mp 5 | . . . . 5 ⊢ 𝑈 = (Scalar‘𝑊) |
| 43 | eqid 2731 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 44 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 45 | 22, 42, 43, 44 | lmodvscl 20811 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑍 ∈ (Base‘𝑈) ∧ (1r‘𝑉) ∈ 𝑃) → (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉)) ∈ 𝑃) |
| 46 | 36, 39, 30, 45 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑊)(1r‘𝑉)) ∈ 𝑃) |
| 47 | 33, 46 | eqeltrd 2831 | . 2 ⊢ (𝜑 → (𝑍( ·𝑠 ‘𝑉)(1r‘𝑉)) ∈ 𝑃) |
| 48 | 19, 47 | eqeltrd 2831 | 1 ⊢ (𝜑 → (𝐴‘𝑍) ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 Scalarcsca 17164 ·𝑠 cvsca 17165 1rcur 20099 Ringcrg 20151 SubRingcsubrg 20484 LModclmod 20793 algSccascl 21789 Poly1cpl1 22089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19125 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-subrng 20461 df-subrg 20485 df-lmod 20795 df-lss 20865 df-ascl 21792 df-psr 21846 df-mpl 21848 df-opsr 21850 df-psr1 22092 df-ply1 22094 |
| This theorem is referenced by: evls1maprnss 22293 irngss 33700 |
| Copyright terms: Public domain | W3C validator |