![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > asclply1subcl | Structured version Visualization version GIF version |
Description: Closure of the algebra scalar injection function in a polynomial on a subring. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
Ref | Expression |
---|---|
asclply1subcl.1 | β’ π΄ = (algScβπ) |
asclply1subcl.2 | β’ π = (π βΎs π) |
asclply1subcl.3 | β’ π = (Poly1βπ ) |
asclply1subcl.4 | β’ π = (Poly1βπ) |
asclply1subcl.5 | β’ π = (Baseβπ) |
asclply1subcl.6 | β’ (π β π β (SubRingβπ )) |
asclply1subcl.7 | β’ (π β π β π) |
Ref | Expression |
---|---|
asclply1subcl | β’ (π β (π΄βπ) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclply1subcl.6 | . . . . . 6 β’ (π β π β (SubRingβπ )) | |
2 | eqid 2724 | . . . . . . 7 β’ (Baseβπ ) = (Baseβπ ) | |
3 | 2 | subrgss 20464 | . . . . . 6 β’ (π β (SubRingβπ ) β π β (Baseβπ )) |
4 | 1, 3 | syl 17 | . . . . 5 β’ (π β π β (Baseβπ )) |
5 | asclply1subcl.7 | . . . . 5 β’ (π β π β π) | |
6 | 4, 5 | sseldd 3975 | . . . 4 β’ (π β π β (Baseβπ )) |
7 | subrgrcl 20468 | . . . . . 6 β’ (π β (SubRingβπ ) β π β Ring) | |
8 | asclply1subcl.3 | . . . . . . 7 β’ π = (Poly1βπ ) | |
9 | 8 | ply1sca 22094 | . . . . . 6 β’ (π β Ring β π = (Scalarβπ)) |
10 | 1, 7, 9 | 3syl 18 | . . . . 5 β’ (π β π = (Scalarβπ)) |
11 | 10 | fveq2d 6885 | . . . 4 β’ (π β (Baseβπ ) = (Baseβ(Scalarβπ))) |
12 | 6, 11 | eleqtrd 2827 | . . 3 β’ (π β π β (Baseβ(Scalarβπ))) |
13 | asclply1subcl.1 | . . . 4 β’ π΄ = (algScβπ) | |
14 | eqid 2724 | . . . 4 β’ (Scalarβπ) = (Scalarβπ) | |
15 | eqid 2724 | . . . 4 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
16 | eqid 2724 | . . . 4 β’ ( Β·π βπ) = ( Β·π βπ) | |
17 | eqid 2724 | . . . 4 β’ (1rβπ) = (1rβπ) | |
18 | 13, 14, 15, 16, 17 | asclval 21742 | . . 3 β’ (π β (Baseβ(Scalarβπ)) β (π΄βπ) = (π( Β·π βπ)(1rβπ))) |
19 | 12, 18 | syl 17 | . 2 β’ (π β (π΄βπ) = (π( Β·π βπ)(1rβπ))) |
20 | asclply1subcl.2 | . . . . . . 7 β’ π = (π βΎs π) | |
21 | asclply1subcl.4 | . . . . . . 7 β’ π = (Poly1βπ) | |
22 | asclply1subcl.5 | . . . . . . 7 β’ π = (Baseβπ) | |
23 | 8, 20, 21, 22 | subrgply1 22074 | . . . . . 6 β’ (π β (SubRingβπ ) β π β (SubRingβπ)) |
24 | eqid 2724 | . . . . . . 7 β’ (π βΎs π) = (π βΎs π) | |
25 | 24, 16 | ressvsca 17288 | . . . . . 6 β’ (π β (SubRingβπ) β ( Β·π βπ) = ( Β·π β(π βΎs π))) |
26 | 1, 23, 25 | 3syl 18 | . . . . 5 β’ (π β ( Β·π βπ) = ( Β·π β(π βΎs π))) |
27 | 26 | oveqd 7418 | . . . 4 β’ (π β (π( Β·π βπ)(1rβπ)) = (π( Β·π β(π βΎs π))(1rβπ))) |
28 | id 22 | . . . . 5 β’ (π β π) | |
29 | 17 | subrg1cl 20472 | . . . . . 6 β’ (π β (SubRingβπ) β (1rβπ) β π) |
30 | 1, 23, 29 | 3syl 18 | . . . . 5 β’ (π β (1rβπ) β π) |
31 | 8, 20, 21, 22, 1, 24 | ressply1vsca 22073 | . . . . 5 β’ ((π β§ (π β π β§ (1rβπ) β π)) β (π( Β·π βπ)(1rβπ)) = (π( Β·π β(π βΎs π))(1rβπ))) |
32 | 28, 5, 30, 31 | syl12anc 834 | . . . 4 β’ (π β (π( Β·π βπ)(1rβπ)) = (π( Β·π β(π βΎs π))(1rβπ))) |
33 | 27, 32 | eqtr4d 2767 | . . 3 β’ (π β (π( Β·π βπ)(1rβπ)) = (π( Β·π βπ)(1rβπ))) |
34 | 20 | subrgring 20466 | . . . . 5 β’ (π β (SubRingβπ ) β π β Ring) |
35 | 21 | ply1lmod 22093 | . . . . 5 β’ (π β Ring β π β LMod) |
36 | 1, 34, 35 | 3syl 18 | . . . 4 β’ (π β π β LMod) |
37 | 20, 2 | ressbas2 17181 | . . . . . 6 β’ (π β (Baseβπ ) β π = (Baseβπ)) |
38 | 1, 3, 37 | 3syl 18 | . . . . 5 β’ (π β π = (Baseβπ)) |
39 | 5, 38 | eleqtrd 2827 | . . . 4 β’ (π β π β (Baseβπ)) |
40 | 20 | ovexi 7435 | . . . . . 6 β’ π β V |
41 | 21 | ply1sca 22094 | . . . . . 6 β’ (π β V β π = (Scalarβπ)) |
42 | 40, 41 | ax-mp 5 | . . . . 5 β’ π = (Scalarβπ) |
43 | eqid 2724 | . . . . 5 β’ ( Β·π βπ) = ( Β·π βπ) | |
44 | eqid 2724 | . . . . 5 β’ (Baseβπ) = (Baseβπ) | |
45 | 22, 42, 43, 44 | lmodvscl 20714 | . . . 4 β’ ((π β LMod β§ π β (Baseβπ) β§ (1rβπ) β π) β (π( Β·π βπ)(1rβπ)) β π) |
46 | 36, 39, 30, 45 | syl3anc 1368 | . . 3 β’ (π β (π( Β·π βπ)(1rβπ)) β π) |
47 | 33, 46 | eqeltrd 2825 | . 2 β’ (π β (π( Β·π βπ)(1rβπ)) β π) |
48 | 19, 47 | eqeltrd 2825 | 1 β’ (π β (π΄βπ) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3466 β wss 3940 βcfv 6533 (class class class)co 7401 Basecbs 17143 βΎs cress 17172 Scalarcsca 17199 Β·π cvsca 17200 1rcur 20076 Ringcrg 20128 SubRingcsubrg 20459 LModclmod 20696 algSccascl 21715 Poly1cpl1 22019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-ofr 7664 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-fz 13482 df-fzo 13625 df-seq 13964 df-hash 14288 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17386 df-gsum 17387 df-prds 17392 df-pws 17394 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-mhm 18703 df-submnd 18704 df-grp 18856 df-minusg 18857 df-sbg 18858 df-mulg 18986 df-subg 19040 df-ghm 19129 df-cntz 19223 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-subrng 20436 df-subrg 20461 df-lmod 20698 df-lss 20769 df-ascl 21718 df-psr 21771 df-mpl 21773 df-opsr 21775 df-psr1 22022 df-ply1 22024 |
This theorem is referenced by: irngss 33231 evls1maprnss 33241 |
Copyright terms: Public domain | W3C validator |