| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgugrp | Structured version Visualization version GIF version | ||
| Description: The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| subrgugrp.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| subrgugrp.2 | ⊢ 𝑈 = (Unit‘𝑅) |
| subrgugrp.3 | ⊢ 𝑉 = (Unit‘𝑆) |
| subrgugrp.4 | ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) |
| Ref | Expression |
|---|---|
| subrgugrp | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgugrp.1 | . . 3 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | subrgugrp.2 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | subrgugrp.3 | . . 3 ⊢ 𝑉 = (Unit‘𝑆) | |
| 4 | 1, 2, 3 | subrguss 20496 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ 𝑈) |
| 5 | 1 | subrgring 20483 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| 6 | eqid 2729 | . . . 4 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 7 | 3, 6 | 1unit 20283 | . . 3 ⊢ (𝑆 ∈ Ring → (1r‘𝑆) ∈ 𝑉) |
| 8 | ne0i 4304 | . . 3 ⊢ ((1r‘𝑆) ∈ 𝑉 → 𝑉 ≠ ∅) | |
| 9 | 5, 7, 8 | 3syl 18 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ≠ ∅) |
| 10 | eqid 2729 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 11 | 1, 10 | ressmulr 17270 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (.r‘𝑅) = (.r‘𝑆)) |
| 12 | 11 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (.r‘𝑅) = (.r‘𝑆)) |
| 13 | 12 | oveqd 7404 | . . . . . . 7 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑆)𝑦)) |
| 14 | eqid 2729 | . . . . . . . . 9 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 15 | 3, 14 | unitmulcl 20289 | . . . . . . . 8 ⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑆)𝑦) ∈ 𝑉) |
| 16 | 5, 15 | syl3an1 1163 | . . . . . . 7 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑆)𝑦) ∈ 𝑉) |
| 17 | 13, 16 | eqeltrd 2828 | . . . . . 6 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑉) |
| 18 | 17 | 3expa 1118 | . . . . 5 ⊢ (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑉) |
| 19 | 18 | ralrimiva 3125 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉) |
| 20 | eqid 2729 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 21 | eqid 2729 | . . . . . 6 ⊢ (invr‘𝑆) = (invr‘𝑆) | |
| 22 | 1, 20, 3, 21 | subrginv 20497 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑅)‘𝑥) = ((invr‘𝑆)‘𝑥)) |
| 23 | 3, 21 | unitinvcl 20299 | . . . . . 6 ⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ 𝑉) |
| 24 | 5, 23 | sylan 580 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ 𝑉) |
| 25 | 22, 24 | eqeltrd 2828 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑅)‘𝑥) ∈ 𝑉) |
| 26 | 19, 25 | jca 511 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)) |
| 27 | 26 | ralrimiva 3125 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)) |
| 28 | subrgrcl 20485 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 29 | subrgugrp.4 | . . . 4 ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) | |
| 30 | 2, 29 | unitgrp 20292 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Grp) |
| 31 | 2, 29 | unitgrpbas 20291 | . . . 4 ⊢ 𝑈 = (Base‘𝐺) |
| 32 | 2 | fvexi 6872 | . . . . 5 ⊢ 𝑈 ∈ V |
| 33 | eqid 2729 | . . . . . . 7 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 34 | 33, 10 | mgpplusg 20053 | . . . . . 6 ⊢ (.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
| 35 | 29, 34 | ressplusg 17254 | . . . . 5 ⊢ (𝑈 ∈ V → (.r‘𝑅) = (+g‘𝐺)) |
| 36 | 32, 35 | ax-mp 5 | . . . 4 ⊢ (.r‘𝑅) = (+g‘𝐺) |
| 37 | 2, 29, 20 | invrfval 20298 | . . . 4 ⊢ (invr‘𝑅) = (invg‘𝐺) |
| 38 | 31, 36, 37 | issubg2 19073 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉 ⊆ 𝑈 ∧ 𝑉 ≠ ∅ ∧ ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)))) |
| 39 | 28, 30, 38 | 3syl 18 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉 ⊆ 𝑈 ∧ 𝑉 ≠ ∅ ∧ ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)))) |
| 40 | 4, 9, 27, 39 | mpbir3and 1343 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 ‘cfv 6511 (class class class)co 7387 ↾s cress 17200 +gcplusg 17220 .rcmulr 17221 Grpcgrp 18865 SubGrpcsubg 19052 mulGrpcmgp 20049 1rcur 20090 Ringcrg 20142 Unitcui 20264 invrcinvr 20296 SubRingcsubrg 20478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-subrg 20479 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |