MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgugrp Structured version   Visualization version   GIF version

Theorem subrgugrp 19819
Description: The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgugrp.1 𝑆 = (𝑅s 𝐴)
subrgugrp.2 𝑈 = (Unit‘𝑅)
subrgugrp.3 𝑉 = (Unit‘𝑆)
subrgugrp.4 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
Assertion
Ref Expression
subrgugrp (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺))

Proof of Theorem subrgugrp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgugrp.1 . . 3 𝑆 = (𝑅s 𝐴)
2 subrgugrp.2 . . 3 𝑈 = (Unit‘𝑅)
3 subrgugrp.3 . . 3 𝑉 = (Unit‘𝑆)
41, 2, 3subrguss 19815 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)
51subrgring 19803 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
6 eqid 2737 . . . 4 (1r𝑆) = (1r𝑆)
73, 61unit 19676 . . 3 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝑉)
8 ne0i 4249 . . 3 ((1r𝑆) ∈ 𝑉𝑉 ≠ ∅)
95, 7, 83syl 18 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ≠ ∅)
10 eqid 2737 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
111, 10ressmulr 16848 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
12113ad2ant1 1135 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (.r𝑅) = (.r𝑆))
1312oveqd 7230 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑆)𝑦))
14 eqid 2737 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
153, 14unitmulcl 19682 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑆)𝑦) ∈ 𝑉)
165, 15syl3an1 1165 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑆)𝑦) ∈ 𝑉)
1713, 16eqeltrd 2838 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑅)𝑦) ∈ 𝑉)
18173expa 1120 . . . . 5 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) ∧ 𝑦𝑉) → (𝑥(.r𝑅)𝑦) ∈ 𝑉)
1918ralrimiva 3105 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉)
20 eqid 2737 . . . . . 6 (invr𝑅) = (invr𝑅)
21 eqid 2737 . . . . . 6 (invr𝑆) = (invr𝑆)
221, 20, 3, 21subrginv 19816 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑅)‘𝑥) = ((invr𝑆)‘𝑥))
233, 21unitinvcl 19692 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
245, 23sylan 583 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
2522, 24eqeltrd 2838 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑅)‘𝑥) ∈ 𝑉)
2619, 25jca 515 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))
2726ralrimiva 3105 . 2 (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))
28 subrgrcl 19805 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
29 subrgugrp.4 . . . 4 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
302, 29unitgrp 19685 . . 3 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
312, 29unitgrpbas 19684 . . . 4 𝑈 = (Base‘𝐺)
322fvexi 6731 . . . . 5 𝑈 ∈ V
33 eqid 2737 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3433, 10mgpplusg 19508 . . . . . 6 (.r𝑅) = (+g‘(mulGrp‘𝑅))
3529, 34ressplusg 16834 . . . . 5 (𝑈 ∈ V → (.r𝑅) = (+g𝐺))
3632, 35ax-mp 5 . . . 4 (.r𝑅) = (+g𝐺)
372, 29, 20invrfval 19691 . . . 4 (invr𝑅) = (invg𝐺)
3831, 36, 37issubg2 18558 . . 3 (𝐺 ∈ Grp → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉𝑈𝑉 ≠ ∅ ∧ ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))))
3928, 30, 383syl 18 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉𝑈𝑉 ≠ ∅ ∧ ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))))
404, 9, 27, 39mpbir3and 1344 1 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wral 3061  Vcvv 3408  wss 3866  c0 4237  cfv 6380  (class class class)co 7213  s cress 16784  +gcplusg 16802  .rcmulr 16803  Grpcgrp 18365  SubGrpcsubg 18537  mulGrpcmgp 19504  1rcur 19516  Ringcrg 19562  Unitcui 19657  invrcinvr 19689  SubRingcsubrg 19796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-minusg 18369  df-subg 18540  df-mgp 19505  df-ur 19517  df-ring 19564  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-subrg 19798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator