MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgugrp Structured version   Visualization version   GIF version

Theorem subrgugrp 20359
Description: The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgugrp.1 𝑆 = (𝑅s 𝐴)
subrgugrp.2 𝑈 = (Unit‘𝑅)
subrgugrp.3 𝑉 = (Unit‘𝑆)
subrgugrp.4 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
Assertion
Ref Expression
subrgugrp (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺))

Proof of Theorem subrgugrp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgugrp.1 . . 3 𝑆 = (𝑅s 𝐴)
2 subrgugrp.2 . . 3 𝑈 = (Unit‘𝑅)
3 subrgugrp.3 . . 3 𝑉 = (Unit‘𝑆)
41, 2, 3subrguss 20355 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)
51subrgring 20343 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
6 eqid 2733 . . . 4 (1r𝑆) = (1r𝑆)
73, 61unit 20166 . . 3 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝑉)
8 ne0i 4332 . . 3 ((1r𝑆) ∈ 𝑉𝑉 ≠ ∅)
95, 7, 83syl 18 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ≠ ∅)
10 eqid 2733 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
111, 10ressmulr 17239 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
12113ad2ant1 1134 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (.r𝑅) = (.r𝑆))
1312oveqd 7413 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑆)𝑦))
14 eqid 2733 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
153, 14unitmulcl 20172 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑆)𝑦) ∈ 𝑉)
165, 15syl3an1 1164 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑆)𝑦) ∈ 𝑉)
1713, 16eqeltrd 2834 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑅)𝑦) ∈ 𝑉)
18173expa 1119 . . . . 5 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) ∧ 𝑦𝑉) → (𝑥(.r𝑅)𝑦) ∈ 𝑉)
1918ralrimiva 3147 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉)
20 eqid 2733 . . . . . 6 (invr𝑅) = (invr𝑅)
21 eqid 2733 . . . . . 6 (invr𝑆) = (invr𝑆)
221, 20, 3, 21subrginv 20356 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑅)‘𝑥) = ((invr𝑆)‘𝑥))
233, 21unitinvcl 20182 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
245, 23sylan 581 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
2522, 24eqeltrd 2834 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑅)‘𝑥) ∈ 𝑉)
2619, 25jca 513 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))
2726ralrimiva 3147 . 2 (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))
28 subrgrcl 20345 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
29 subrgugrp.4 . . . 4 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
302, 29unitgrp 20175 . . 3 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
312, 29unitgrpbas 20174 . . . 4 𝑈 = (Base‘𝐺)
322fvexi 6895 . . . . 5 𝑈 ∈ V
33 eqid 2733 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3433, 10mgpplusg 19974 . . . . . 6 (.r𝑅) = (+g‘(mulGrp‘𝑅))
3529, 34ressplusg 17222 . . . . 5 (𝑈 ∈ V → (.r𝑅) = (+g𝐺))
3632, 35ax-mp 5 . . . 4 (.r𝑅) = (+g𝐺)
372, 29, 20invrfval 20181 . . . 4 (invr𝑅) = (invg𝐺)
3831, 36, 37issubg2 19006 . . 3 (𝐺 ∈ Grp → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉𝑈𝑉 ≠ ∅ ∧ ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))))
3928, 30, 383syl 18 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉𝑈𝑉 ≠ ∅ ∧ ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))))
404, 9, 27, 39mpbir3and 1343 1 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wral 3062  Vcvv 3475  wss 3946  c0 4320  cfv 6535  (class class class)co 7396  s cress 17160  +gcplusg 17184  .rcmulr 17185  Grpcgrp 18806  SubGrpcsubg 18985  mulGrpcmgp 19970  1rcur 19987  Ringcrg 20038  Unitcui 20147  invrcinvr 20179  SubRingcsubrg 20336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-2nd 7963  df-tpos 8198  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-er 8691  df-en 8928  df-dom 8929  df-sdom 8930  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-nn 12200  df-2 12262  df-3 12263  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-mulr 17198  df-0g 17374  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-grp 18809  df-minusg 18810  df-subg 18988  df-mgp 19971  df-ur 19988  df-ring 20040  df-oppr 20128  df-dvdsr 20149  df-unit 20150  df-invr 20180  df-subrg 20338
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator