Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgugrp | Structured version Visualization version GIF version |
Description: The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
subrgugrp.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
subrgugrp.2 | ⊢ 𝑈 = (Unit‘𝑅) |
subrgugrp.3 | ⊢ 𝑉 = (Unit‘𝑆) |
subrgugrp.4 | ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) |
Ref | Expression |
---|---|
subrgugrp | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgugrp.1 | . . 3 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
2 | subrgugrp.2 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | subrgugrp.3 | . . 3 ⊢ 𝑉 = (Unit‘𝑆) | |
4 | 1, 2, 3 | subrguss 19954 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ 𝑈) |
5 | 1 | subrgring 19942 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
6 | eqid 2738 | . . . 4 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
7 | 3, 6 | 1unit 19815 | . . 3 ⊢ (𝑆 ∈ Ring → (1r‘𝑆) ∈ 𝑉) |
8 | ne0i 4265 | . . 3 ⊢ ((1r‘𝑆) ∈ 𝑉 → 𝑉 ≠ ∅) | |
9 | 5, 7, 8 | 3syl 18 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ≠ ∅) |
10 | eqid 2738 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
11 | 1, 10 | ressmulr 16943 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (.r‘𝑅) = (.r‘𝑆)) |
12 | 11 | 3ad2ant1 1131 | . . . . . . . 8 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (.r‘𝑅) = (.r‘𝑆)) |
13 | 12 | oveqd 7272 | . . . . . . 7 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑆)𝑦)) |
14 | eqid 2738 | . . . . . . . . 9 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
15 | 3, 14 | unitmulcl 19821 | . . . . . . . 8 ⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑆)𝑦) ∈ 𝑉) |
16 | 5, 15 | syl3an1 1161 | . . . . . . 7 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑆)𝑦) ∈ 𝑉) |
17 | 13, 16 | eqeltrd 2839 | . . . . . 6 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑉) |
18 | 17 | 3expa 1116 | . . . . 5 ⊢ (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑉) |
19 | 18 | ralrimiva 3107 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉) |
20 | eqid 2738 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
21 | eqid 2738 | . . . . . 6 ⊢ (invr‘𝑆) = (invr‘𝑆) | |
22 | 1, 20, 3, 21 | subrginv 19955 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑅)‘𝑥) = ((invr‘𝑆)‘𝑥)) |
23 | 3, 21 | unitinvcl 19831 | . . . . . 6 ⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ 𝑉) |
24 | 5, 23 | sylan 579 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ 𝑉) |
25 | 22, 24 | eqeltrd 2839 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑅)‘𝑥) ∈ 𝑉) |
26 | 19, 25 | jca 511 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)) |
27 | 26 | ralrimiva 3107 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)) |
28 | subrgrcl 19944 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
29 | subrgugrp.4 | . . . 4 ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) | |
30 | 2, 29 | unitgrp 19824 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Grp) |
31 | 2, 29 | unitgrpbas 19823 | . . . 4 ⊢ 𝑈 = (Base‘𝐺) |
32 | 2 | fvexi 6770 | . . . . 5 ⊢ 𝑈 ∈ V |
33 | eqid 2738 | . . . . . . 7 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
34 | 33, 10 | mgpplusg 19639 | . . . . . 6 ⊢ (.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
35 | 29, 34 | ressplusg 16926 | . . . . 5 ⊢ (𝑈 ∈ V → (.r‘𝑅) = (+g‘𝐺)) |
36 | 32, 35 | ax-mp 5 | . . . 4 ⊢ (.r‘𝑅) = (+g‘𝐺) |
37 | 2, 29, 20 | invrfval 19830 | . . . 4 ⊢ (invr‘𝑅) = (invg‘𝐺) |
38 | 31, 36, 37 | issubg2 18685 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉 ⊆ 𝑈 ∧ 𝑉 ≠ ∅ ∧ ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)))) |
39 | 28, 30, 38 | 3syl 18 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉 ⊆ 𝑈 ∧ 𝑉 ≠ ∅ ∧ ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)))) |
40 | 4, 9, 27, 39 | mpbir3and 1340 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 ‘cfv 6418 (class class class)co 7255 ↾s cress 16867 +gcplusg 16888 .rcmulr 16889 Grpcgrp 18492 SubGrpcsubg 18664 mulGrpcmgp 19635 1rcur 19652 Ringcrg 19698 Unitcui 19796 invrcinvr 19828 SubRingcsubrg 19935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-subg 18667 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-subrg 19937 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |