Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgugrp | Structured version Visualization version GIF version |
Description: The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
subrgugrp.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
subrgugrp.2 | ⊢ 𝑈 = (Unit‘𝑅) |
subrgugrp.3 | ⊢ 𝑉 = (Unit‘𝑆) |
subrgugrp.4 | ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) |
Ref | Expression |
---|---|
subrgugrp | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgugrp.1 | . . 3 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
2 | subrgugrp.2 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | subrgugrp.3 | . . 3 ⊢ 𝑉 = (Unit‘𝑆) | |
4 | 1, 2, 3 | subrguss 20039 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ 𝑈) |
5 | 1 | subrgring 20027 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
6 | eqid 2738 | . . . 4 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
7 | 3, 6 | 1unit 19900 | . . 3 ⊢ (𝑆 ∈ Ring → (1r‘𝑆) ∈ 𝑉) |
8 | ne0i 4268 | . . 3 ⊢ ((1r‘𝑆) ∈ 𝑉 → 𝑉 ≠ ∅) | |
9 | 5, 7, 8 | 3syl 18 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ≠ ∅) |
10 | eqid 2738 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
11 | 1, 10 | ressmulr 17017 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (.r‘𝑅) = (.r‘𝑆)) |
12 | 11 | 3ad2ant1 1132 | . . . . . . . 8 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (.r‘𝑅) = (.r‘𝑆)) |
13 | 12 | oveqd 7292 | . . . . . . 7 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑆)𝑦)) |
14 | eqid 2738 | . . . . . . . . 9 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
15 | 3, 14 | unitmulcl 19906 | . . . . . . . 8 ⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑆)𝑦) ∈ 𝑉) |
16 | 5, 15 | syl3an1 1162 | . . . . . . 7 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑆)𝑦) ∈ 𝑉) |
17 | 13, 16 | eqeltrd 2839 | . . . . . 6 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑉) |
18 | 17 | 3expa 1117 | . . . . 5 ⊢ (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑉) |
19 | 18 | ralrimiva 3103 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉) |
20 | eqid 2738 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
21 | eqid 2738 | . . . . . 6 ⊢ (invr‘𝑆) = (invr‘𝑆) | |
22 | 1, 20, 3, 21 | subrginv 20040 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑅)‘𝑥) = ((invr‘𝑆)‘𝑥)) |
23 | 3, 21 | unitinvcl 19916 | . . . . . 6 ⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ 𝑉) |
24 | 5, 23 | sylan 580 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ 𝑉) |
25 | 22, 24 | eqeltrd 2839 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑅)‘𝑥) ∈ 𝑉) |
26 | 19, 25 | jca 512 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)) |
27 | 26 | ralrimiva 3103 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)) |
28 | subrgrcl 20029 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
29 | subrgugrp.4 | . . . 4 ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) | |
30 | 2, 29 | unitgrp 19909 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Grp) |
31 | 2, 29 | unitgrpbas 19908 | . . . 4 ⊢ 𝑈 = (Base‘𝐺) |
32 | 2 | fvexi 6788 | . . . . 5 ⊢ 𝑈 ∈ V |
33 | eqid 2738 | . . . . . . 7 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
34 | 33, 10 | mgpplusg 19724 | . . . . . 6 ⊢ (.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
35 | 29, 34 | ressplusg 17000 | . . . . 5 ⊢ (𝑈 ∈ V → (.r‘𝑅) = (+g‘𝐺)) |
36 | 32, 35 | ax-mp 5 | . . . 4 ⊢ (.r‘𝑅) = (+g‘𝐺) |
37 | 2, 29, 20 | invrfval 19915 | . . . 4 ⊢ (invr‘𝑅) = (invg‘𝐺) |
38 | 31, 36, 37 | issubg2 18770 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉 ⊆ 𝑈 ∧ 𝑉 ≠ ∅ ∧ ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)))) |
39 | 28, 30, 38 | 3syl 18 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉 ⊆ 𝑈 ∧ 𝑉 ≠ ∅ ∧ ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)))) |
40 | 4, 9, 27, 39 | mpbir3and 1341 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 ‘cfv 6433 (class class class)co 7275 ↾s cress 16941 +gcplusg 16962 .rcmulr 16963 Grpcgrp 18577 SubGrpcsubg 18749 mulGrpcmgp 19720 1rcur 19737 Ringcrg 19783 Unitcui 19881 invrcinvr 19913 SubRingcsubrg 20020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-subg 18752 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-subrg 20022 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |