MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgugrp Structured version   Visualization version   GIF version

Theorem subrgugrp 20608
Description: The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgugrp.1 𝑆 = (𝑅s 𝐴)
subrgugrp.2 𝑈 = (Unit‘𝑅)
subrgugrp.3 𝑉 = (Unit‘𝑆)
subrgugrp.4 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
Assertion
Ref Expression
subrgugrp (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺))

Proof of Theorem subrgugrp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgugrp.1 . . 3 𝑆 = (𝑅s 𝐴)
2 subrgugrp.2 . . 3 𝑈 = (Unit‘𝑅)
3 subrgugrp.3 . . 3 𝑉 = (Unit‘𝑆)
41, 2, 3subrguss 20604 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)
51subrgring 20591 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
6 eqid 2735 . . . 4 (1r𝑆) = (1r𝑆)
73, 61unit 20391 . . 3 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝑉)
8 ne0i 4347 . . 3 ((1r𝑆) ∈ 𝑉𝑉 ≠ ∅)
95, 7, 83syl 18 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ≠ ∅)
10 eqid 2735 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
111, 10ressmulr 17353 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
12113ad2ant1 1132 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (.r𝑅) = (.r𝑆))
1312oveqd 7448 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑆)𝑦))
14 eqid 2735 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
153, 14unitmulcl 20397 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑆)𝑦) ∈ 𝑉)
165, 15syl3an1 1162 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑆)𝑦) ∈ 𝑉)
1713, 16eqeltrd 2839 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑅)𝑦) ∈ 𝑉)
18173expa 1117 . . . . 5 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) ∧ 𝑦𝑉) → (𝑥(.r𝑅)𝑦) ∈ 𝑉)
1918ralrimiva 3144 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉)
20 eqid 2735 . . . . . 6 (invr𝑅) = (invr𝑅)
21 eqid 2735 . . . . . 6 (invr𝑆) = (invr𝑆)
221, 20, 3, 21subrginv 20605 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑅)‘𝑥) = ((invr𝑆)‘𝑥))
233, 21unitinvcl 20407 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
245, 23sylan 580 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
2522, 24eqeltrd 2839 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑅)‘𝑥) ∈ 𝑉)
2619, 25jca 511 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))
2726ralrimiva 3144 . 2 (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))
28 subrgrcl 20593 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
29 subrgugrp.4 . . . 4 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
302, 29unitgrp 20400 . . 3 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
312, 29unitgrpbas 20399 . . . 4 𝑈 = (Base‘𝐺)
322fvexi 6921 . . . . 5 𝑈 ∈ V
33 eqid 2735 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3433, 10mgpplusg 20156 . . . . . 6 (.r𝑅) = (+g‘(mulGrp‘𝑅))
3529, 34ressplusg 17336 . . . . 5 (𝑈 ∈ V → (.r𝑅) = (+g𝐺))
3632, 35ax-mp 5 . . . 4 (.r𝑅) = (+g𝐺)
372, 29, 20invrfval 20406 . . . 4 (invr𝑅) = (invg𝐺)
3831, 36, 37issubg2 19172 . . 3 (𝐺 ∈ Grp → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉𝑈𝑉 ≠ ∅ ∧ ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))))
3928, 30, 383syl 18 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉𝑈𝑉 ≠ ∅ ∧ ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))))
404, 9, 27, 39mpbir3and 1341 1 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  Vcvv 3478  wss 3963  c0 4339  cfv 6563  (class class class)co 7431  s cress 17274  +gcplusg 17298  .rcmulr 17299  Grpcgrp 18964  SubGrpcsubg 19151  mulGrpcmgp 20152  1rcur 20199  Ringcrg 20251  Unitcui 20372  invrcinvr 20404  SubRingcsubrg 20586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-subrg 20587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator