| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgugrp | Structured version Visualization version GIF version | ||
| Description: The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| subrgugrp.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| subrgugrp.2 | ⊢ 𝑈 = (Unit‘𝑅) |
| subrgugrp.3 | ⊢ 𝑉 = (Unit‘𝑆) |
| subrgugrp.4 | ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) |
| Ref | Expression |
|---|---|
| subrgugrp | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgugrp.1 | . . 3 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | subrgugrp.2 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | subrgugrp.3 | . . 3 ⊢ 𝑉 = (Unit‘𝑆) | |
| 4 | 1, 2, 3 | subrguss 20547 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ 𝑈) |
| 5 | 1 | subrgring 20534 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| 6 | eqid 2735 | . . . 4 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 7 | 3, 6 | 1unit 20334 | . . 3 ⊢ (𝑆 ∈ Ring → (1r‘𝑆) ∈ 𝑉) |
| 8 | ne0i 4316 | . . 3 ⊢ ((1r‘𝑆) ∈ 𝑉 → 𝑉 ≠ ∅) | |
| 9 | 5, 7, 8 | 3syl 18 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ≠ ∅) |
| 10 | eqid 2735 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 11 | 1, 10 | ressmulr 17321 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (.r‘𝑅) = (.r‘𝑆)) |
| 12 | 11 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (.r‘𝑅) = (.r‘𝑆)) |
| 13 | 12 | oveqd 7422 | . . . . . . 7 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑆)𝑦)) |
| 14 | eqid 2735 | . . . . . . . . 9 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 15 | 3, 14 | unitmulcl 20340 | . . . . . . . 8 ⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑆)𝑦) ∈ 𝑉) |
| 16 | 5, 15 | syl3an1 1163 | . . . . . . 7 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑆)𝑦) ∈ 𝑉) |
| 17 | 13, 16 | eqeltrd 2834 | . . . . . 6 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑉) |
| 18 | 17 | 3expa 1118 | . . . . 5 ⊢ (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑉) |
| 19 | 18 | ralrimiva 3132 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉) |
| 20 | eqid 2735 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 21 | eqid 2735 | . . . . . 6 ⊢ (invr‘𝑆) = (invr‘𝑆) | |
| 22 | 1, 20, 3, 21 | subrginv 20548 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑅)‘𝑥) = ((invr‘𝑆)‘𝑥)) |
| 23 | 3, 21 | unitinvcl 20350 | . . . . . 6 ⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ 𝑉) |
| 24 | 5, 23 | sylan 580 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ 𝑉) |
| 25 | 22, 24 | eqeltrd 2834 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑅)‘𝑥) ∈ 𝑉) |
| 26 | 19, 25 | jca 511 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)) |
| 27 | 26 | ralrimiva 3132 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)) |
| 28 | subrgrcl 20536 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 29 | subrgugrp.4 | . . . 4 ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) | |
| 30 | 2, 29 | unitgrp 20343 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Grp) |
| 31 | 2, 29 | unitgrpbas 20342 | . . . 4 ⊢ 𝑈 = (Base‘𝐺) |
| 32 | 2 | fvexi 6890 | . . . . 5 ⊢ 𝑈 ∈ V |
| 33 | eqid 2735 | . . . . . . 7 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 34 | 33, 10 | mgpplusg 20104 | . . . . . 6 ⊢ (.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
| 35 | 29, 34 | ressplusg 17305 | . . . . 5 ⊢ (𝑈 ∈ V → (.r‘𝑅) = (+g‘𝐺)) |
| 36 | 32, 35 | ax-mp 5 | . . . 4 ⊢ (.r‘𝑅) = (+g‘𝐺) |
| 37 | 2, 29, 20 | invrfval 20349 | . . . 4 ⊢ (invr‘𝑅) = (invg‘𝐺) |
| 38 | 31, 36, 37 | issubg2 19124 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉 ⊆ 𝑈 ∧ 𝑉 ≠ ∅ ∧ ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)))) |
| 39 | 28, 30, 38 | 3syl 18 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉 ⊆ 𝑈 ∧ 𝑉 ≠ ∅ ∧ ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)))) |
| 40 | 4, 9, 27, 39 | mpbir3and 1343 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 ‘cfv 6531 (class class class)co 7405 ↾s cress 17251 +gcplusg 17271 .rcmulr 17272 Grpcgrp 18916 SubGrpcsubg 19103 mulGrpcmgp 20100 1rcur 20141 Ringcrg 20193 Unitcui 20315 invrcinvr 20347 SubRingcsubrg 20529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-subg 19106 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-subrg 20530 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |