MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgugrp Structured version   Visualization version   GIF version

Theorem subrgugrp 20495
Description: The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgugrp.1 𝑆 = (𝑅s 𝐴)
subrgugrp.2 𝑈 = (Unit‘𝑅)
subrgugrp.3 𝑉 = (Unit‘𝑆)
subrgugrp.4 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
Assertion
Ref Expression
subrgugrp (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺))

Proof of Theorem subrgugrp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgugrp.1 . . 3 𝑆 = (𝑅s 𝐴)
2 subrgugrp.2 . . 3 𝑈 = (Unit‘𝑅)
3 subrgugrp.3 . . 3 𝑉 = (Unit‘𝑆)
41, 2, 3subrguss 20491 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)
51subrgring 20478 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
6 eqid 2729 . . . 4 (1r𝑆) = (1r𝑆)
73, 61unit 20278 . . 3 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝑉)
8 ne0i 4294 . . 3 ((1r𝑆) ∈ 𝑉𝑉 ≠ ∅)
95, 7, 83syl 18 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ≠ ∅)
10 eqid 2729 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
111, 10ressmulr 17230 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
12113ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (.r𝑅) = (.r𝑆))
1312oveqd 7370 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑆)𝑦))
14 eqid 2729 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
153, 14unitmulcl 20284 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑆)𝑦) ∈ 𝑉)
165, 15syl3an1 1163 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑆)𝑦) ∈ 𝑉)
1713, 16eqeltrd 2828 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑅)𝑦) ∈ 𝑉)
18173expa 1118 . . . . 5 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) ∧ 𝑦𝑉) → (𝑥(.r𝑅)𝑦) ∈ 𝑉)
1918ralrimiva 3121 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉)
20 eqid 2729 . . . . . 6 (invr𝑅) = (invr𝑅)
21 eqid 2729 . . . . . 6 (invr𝑆) = (invr𝑆)
221, 20, 3, 21subrginv 20492 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑅)‘𝑥) = ((invr𝑆)‘𝑥))
233, 21unitinvcl 20294 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
245, 23sylan 580 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
2522, 24eqeltrd 2828 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑅)‘𝑥) ∈ 𝑉)
2619, 25jca 511 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))
2726ralrimiva 3121 . 2 (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))
28 subrgrcl 20480 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
29 subrgugrp.4 . . . 4 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
302, 29unitgrp 20287 . . 3 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
312, 29unitgrpbas 20286 . . . 4 𝑈 = (Base‘𝐺)
322fvexi 6840 . . . . 5 𝑈 ∈ V
33 eqid 2729 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3433, 10mgpplusg 20048 . . . . . 6 (.r𝑅) = (+g‘(mulGrp‘𝑅))
3529, 34ressplusg 17214 . . . . 5 (𝑈 ∈ V → (.r𝑅) = (+g𝐺))
3632, 35ax-mp 5 . . . 4 (.r𝑅) = (+g𝐺)
372, 29, 20invrfval 20293 . . . 4 (invr𝑅) = (invg𝐺)
3831, 36, 37issubg2 19039 . . 3 (𝐺 ∈ Grp → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉𝑈𝑉 ≠ ∅ ∧ ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))))
3928, 30, 383syl 18 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉𝑈𝑉 ≠ ∅ ∧ ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))))
404, 9, 27, 39mpbir3and 1343 1 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3438  wss 3905  c0 4286  cfv 6486  (class class class)co 7353  s cress 17160  +gcplusg 17180  .rcmulr 17181  Grpcgrp 18831  SubGrpcsubg 19018  mulGrpcmgp 20044  1rcur 20085  Ringcrg 20137  Unitcui 20259  invrcinvr 20291  SubRingcsubrg 20473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-0g 17364  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-grp 18834  df-minusg 18835  df-subg 19021  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-ring 20139  df-oppr 20241  df-dvdsr 20261  df-unit 20262  df-invr 20292  df-subrg 20474
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator