| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgugrp | Structured version Visualization version GIF version | ||
| Description: The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| subrgugrp.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| subrgugrp.2 | ⊢ 𝑈 = (Unit‘𝑅) |
| subrgugrp.3 | ⊢ 𝑉 = (Unit‘𝑆) |
| subrgugrp.4 | ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) |
| Ref | Expression |
|---|---|
| subrgugrp | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgugrp.1 | . . 3 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | subrgugrp.2 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | subrgugrp.3 | . . 3 ⊢ 𝑉 = (Unit‘𝑆) | |
| 4 | 1, 2, 3 | subrguss 20491 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ 𝑈) |
| 5 | 1 | subrgring 20478 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| 6 | eqid 2729 | . . . 4 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 7 | 3, 6 | 1unit 20278 | . . 3 ⊢ (𝑆 ∈ Ring → (1r‘𝑆) ∈ 𝑉) |
| 8 | ne0i 4294 | . . 3 ⊢ ((1r‘𝑆) ∈ 𝑉 → 𝑉 ≠ ∅) | |
| 9 | 5, 7, 8 | 3syl 18 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ≠ ∅) |
| 10 | eqid 2729 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 11 | 1, 10 | ressmulr 17230 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (.r‘𝑅) = (.r‘𝑆)) |
| 12 | 11 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (.r‘𝑅) = (.r‘𝑆)) |
| 13 | 12 | oveqd 7370 | . . . . . . 7 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑆)𝑦)) |
| 14 | eqid 2729 | . . . . . . . . 9 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 15 | 3, 14 | unitmulcl 20284 | . . . . . . . 8 ⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑆)𝑦) ∈ 𝑉) |
| 16 | 5, 15 | syl3an1 1163 | . . . . . . 7 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑆)𝑦) ∈ 𝑉) |
| 17 | 13, 16 | eqeltrd 2828 | . . . . . 6 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑉) |
| 18 | 17 | 3expa 1118 | . . . . 5 ⊢ (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑉) |
| 19 | 18 | ralrimiva 3121 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉) |
| 20 | eqid 2729 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 21 | eqid 2729 | . . . . . 6 ⊢ (invr‘𝑆) = (invr‘𝑆) | |
| 22 | 1, 20, 3, 21 | subrginv 20492 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑅)‘𝑥) = ((invr‘𝑆)‘𝑥)) |
| 23 | 3, 21 | unitinvcl 20294 | . . . . . 6 ⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ 𝑉) |
| 24 | 5, 23 | sylan 580 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ 𝑉) |
| 25 | 22, 24 | eqeltrd 2828 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑅)‘𝑥) ∈ 𝑉) |
| 26 | 19, 25 | jca 511 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)) |
| 27 | 26 | ralrimiva 3121 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)) |
| 28 | subrgrcl 20480 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 29 | subrgugrp.4 | . . . 4 ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) | |
| 30 | 2, 29 | unitgrp 20287 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Grp) |
| 31 | 2, 29 | unitgrpbas 20286 | . . . 4 ⊢ 𝑈 = (Base‘𝐺) |
| 32 | 2 | fvexi 6840 | . . . . 5 ⊢ 𝑈 ∈ V |
| 33 | eqid 2729 | . . . . . . 7 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 34 | 33, 10 | mgpplusg 20048 | . . . . . 6 ⊢ (.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
| 35 | 29, 34 | ressplusg 17214 | . . . . 5 ⊢ (𝑈 ∈ V → (.r‘𝑅) = (+g‘𝐺)) |
| 36 | 32, 35 | ax-mp 5 | . . . 4 ⊢ (.r‘𝑅) = (+g‘𝐺) |
| 37 | 2, 29, 20 | invrfval 20293 | . . . 4 ⊢ (invr‘𝑅) = (invg‘𝐺) |
| 38 | 31, 36, 37 | issubg2 19039 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉 ⊆ 𝑈 ∧ 𝑉 ≠ ∅ ∧ ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)))) |
| 39 | 28, 30, 38 | 3syl 18 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉 ⊆ 𝑈 ∧ 𝑉 ≠ ∅ ∧ ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)))) |
| 40 | 4, 9, 27, 39 | mpbir3and 1343 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 Vcvv 3438 ⊆ wss 3905 ∅c0 4286 ‘cfv 6486 (class class class)co 7353 ↾s cress 17160 +gcplusg 17180 .rcmulr 17181 Grpcgrp 18831 SubGrpcsubg 19018 mulGrpcmgp 20044 1rcur 20085 Ringcrg 20137 Unitcui 20259 invrcinvr 20291 SubRingcsubrg 20473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-0g 17364 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-grp 18834 df-minusg 18835 df-subg 19021 df-cmn 19680 df-abl 19681 df-mgp 20045 df-rng 20057 df-ur 20086 df-ring 20139 df-oppr 20241 df-dvdsr 20261 df-unit 20262 df-invr 20292 df-subrg 20474 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |