Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlinsubrg Structured version   Visualization version   GIF version

Theorem idlinsubrg 31114
Description: The intersection between an ideal and a subring is an ideal of the subring. (Contributed by Thierry Arnoux, 6-Jul-2024.)
Hypotheses
Ref Expression
idlinsubrg.s 𝑆 = (𝑅s 𝐴)
idlinsubrg.u 𝑈 = (LIdeal‘𝑅)
idlinsubrg.v 𝑉 = (LIdeal‘𝑆)
Assertion
Ref Expression
idlinsubrg ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (𝐼𝐴) ∈ 𝑉)

Proof of Theorem idlinsubrg
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 4130 . . . 4 (𝐼𝐴) ⊆ 𝐴
2 idlinsubrg.s . . . . 5 𝑆 = (𝑅s 𝐴)
32subrgbas 19597 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
41, 3sseqtrid 3940 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝐼𝐴) ⊆ (Base‘𝑆))
54adantr 485 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (𝐼𝐴) ⊆ (Base‘𝑆))
6 subrgrcl 19593 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
7 idlinsubrg.u . . . . . 6 𝑈 = (LIdeal‘𝑅)
8 eqid 2759 . . . . . 6 (0g𝑅) = (0g𝑅)
97, 8lidl0cl 20038 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (0g𝑅) ∈ 𝐼)
106, 9sylan 584 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (0g𝑅) ∈ 𝐼)
11 subrgsubg 19594 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
12 subgsubm 18353 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 ∈ (SubMnd‘𝑅))
138subm0cl 18027 . . . . . 6 (𝐴 ∈ (SubMnd‘𝑅) → (0g𝑅) ∈ 𝐴)
1411, 12, 133syl 18 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (0g𝑅) ∈ 𝐴)
1514adantr 485 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (0g𝑅) ∈ 𝐴)
1610, 15elind 4095 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (0g𝑅) ∈ (𝐼𝐴))
1716ne0d 4230 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (𝐼𝐴) ≠ ∅)
18 eqid 2759 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
192, 18ressplusg 16655 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (+g𝑅) = (+g𝑆))
20 eqid 2759 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
212, 20ressmulr 16668 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
2221oveqd 7160 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (𝑥(.r𝑅)𝑎) = (𝑥(.r𝑆)𝑎))
23 eqidd 2760 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑏 = 𝑏)
2419, 22, 23oveq123d 7164 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) = ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏))
2524ad4antr 732 . . . . . 6 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) = ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏))
266ad4antr 732 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑅 ∈ Ring)
27 simp-4r 784 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝐼𝑈)
28 eqid 2759 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
2928subrgss 19589 . . . . . . . . . . . . 13 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
303, 29eqsstrrd 3927 . . . . . . . . . . . 12 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅))
3130adantr 485 . . . . . . . . . . 11 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (Base‘𝑆) ⊆ (Base‘𝑅))
3231sselda 3888 . . . . . . . . . 10 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑅))
3332ad2antrr 726 . . . . . . . . 9 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑥 ∈ (Base‘𝑅))
34 inss1 4129 . . . . . . . . . . . 12 (𝐼𝐴) ⊆ 𝐼
3534a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐼𝐴) ⊆ 𝐼)
3635sselda 3888 . . . . . . . . . 10 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) → 𝑎𝐼)
3736adantr 485 . . . . . . . . 9 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑎𝐼)
387, 28, 20lidlmcl 20043 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝐼)) → (𝑥(.r𝑅)𝑎) ∈ 𝐼)
3926, 27, 33, 37, 38syl22anc 838 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → (𝑥(.r𝑅)𝑎) ∈ 𝐼)
4034a1i 11 . . . . . . . . 9 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) → (𝐼𝐴) ⊆ 𝐼)
4140sselda 3888 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑏𝐼)
427, 18lidlacl 20039 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ ((𝑥(.r𝑅)𝑎) ∈ 𝐼𝑏𝐼)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐼)
4326, 27, 39, 41, 42syl22anc 838 . . . . . . 7 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐼)
44 simp-4l 783 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝐴 ∈ (SubRing‘𝑅))
45 simpr 489 . . . . . . . . . . 11 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
463ad2antrr 726 . . . . . . . . . . 11 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝐴 = (Base‘𝑆))
4745, 46eleqtrrd 2854 . . . . . . . . . 10 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥𝐴)
4847ad2antrr 726 . . . . . . . . 9 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑥𝐴)
491a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐼𝐴) ⊆ 𝐴)
5049sselda 3888 . . . . . . . . . 10 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) → 𝑎𝐴)
5150adantr 485 . . . . . . . . 9 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑎𝐴)
5220subrgmcl 19600 . . . . . . . . 9 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝐴𝑎𝐴) → (𝑥(.r𝑅)𝑎) ∈ 𝐴)
5344, 48, 51, 52syl3anc 1369 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → (𝑥(.r𝑅)𝑎) ∈ 𝐴)
541a1i 11 . . . . . . . . 9 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) → (𝐼𝐴) ⊆ 𝐴)
5554sselda 3888 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑏𝐴)
5618subrgacl 19599 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑥(.r𝑅)𝑎) ∈ 𝐴𝑏𝐴) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐴)
5744, 53, 55, 56syl3anc 1369 . . . . . . 7 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐴)
5843, 57elind 4095 . . . . . 6 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐼𝐴))
5925, 58eqeltrrd 2852 . . . . 5 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴))
6059anasss 471 . . . 4 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ (𝑎 ∈ (𝐼𝐴) ∧ 𝑏 ∈ (𝐼𝐴))) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴))
6160ralrimivva 3118 . . 3 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → ∀𝑎 ∈ (𝐼𝐴)∀𝑏 ∈ (𝐼𝐴)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴))
6261ralrimiva 3111 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → ∀𝑥 ∈ (Base‘𝑆)∀𝑎 ∈ (𝐼𝐴)∀𝑏 ∈ (𝐼𝐴)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴))
63 idlinsubrg.v . . 3 𝑉 = (LIdeal‘𝑆)
64 eqid 2759 . . 3 (Base‘𝑆) = (Base‘𝑆)
65 eqid 2759 . . 3 (+g𝑆) = (+g𝑆)
66 eqid 2759 . . 3 (.r𝑆) = (.r𝑆)
6763, 64, 65, 66islidl 20037 . 2 ((𝐼𝐴) ∈ 𝑉 ↔ ((𝐼𝐴) ⊆ (Base‘𝑆) ∧ (𝐼𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑎 ∈ (𝐼𝐴)∀𝑏 ∈ (𝐼𝐴)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴)))
685, 17, 62, 67syl3anbrc 1341 1 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (𝐼𝐴) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  wne 2949  wral 3068  cin 3853  wss 3854  c0 4221  cfv 6328  (class class class)co 7143  Basecbs 16526  s cress 16527  +gcplusg 16608  .rcmulr 16609  0gc0g 16756  SubMndcsubmnd 18006  SubGrpcsubg 18325  Ringcrg 19350  SubRingcsubrg 19584  LIdealclidl 19995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-2 11722  df-3 11723  df-4 11724  df-5 11725  df-6 11726  df-7 11727  df-8 11728  df-ndx 16529  df-slot 16530  df-base 16532  df-sets 16533  df-ress 16534  df-plusg 16621  df-mulr 16622  df-sca 16624  df-vsca 16625  df-ip 16626  df-0g 16758  df-mgm 17903  df-sgrp 17952  df-mnd 17963  df-submnd 18008  df-grp 18157  df-minusg 18158  df-sbg 18159  df-subg 18328  df-mgp 19293  df-ur 19305  df-ring 19352  df-subrg 19586  df-lmod 19689  df-lss 19757  df-sra 19997  df-rgmod 19998  df-lidl 19999
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator