Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlinsubrg Structured version   Visualization version   GIF version

Theorem idlinsubrg 31608
Description: The intersection between an ideal and a subring is an ideal of the subring. (Contributed by Thierry Arnoux, 6-Jul-2024.)
Hypotheses
Ref Expression
idlinsubrg.s 𝑆 = (𝑅s 𝐴)
idlinsubrg.u 𝑈 = (LIdeal‘𝑅)
idlinsubrg.v 𝑉 = (LIdeal‘𝑆)
Assertion
Ref Expression
idlinsubrg ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (𝐼𝐴) ∈ 𝑉)

Proof of Theorem idlinsubrg
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 4163 . . . 4 (𝐼𝐴) ⊆ 𝐴
2 idlinsubrg.s . . . . 5 𝑆 = (𝑅s 𝐴)
32subrgbas 20033 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
41, 3sseqtrid 3973 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝐼𝐴) ⊆ (Base‘𝑆))
54adantr 481 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (𝐼𝐴) ⊆ (Base‘𝑆))
6 subrgrcl 20029 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
7 idlinsubrg.u . . . . . 6 𝑈 = (LIdeal‘𝑅)
8 eqid 2738 . . . . . 6 (0g𝑅) = (0g𝑅)
97, 8lidl0cl 20483 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (0g𝑅) ∈ 𝐼)
106, 9sylan 580 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (0g𝑅) ∈ 𝐼)
11 subrgsubg 20030 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
12 subgsubm 18777 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 ∈ (SubMnd‘𝑅))
138subm0cl 18450 . . . . . 6 (𝐴 ∈ (SubMnd‘𝑅) → (0g𝑅) ∈ 𝐴)
1411, 12, 133syl 18 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (0g𝑅) ∈ 𝐴)
1514adantr 481 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (0g𝑅) ∈ 𝐴)
1610, 15elind 4128 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (0g𝑅) ∈ (𝐼𝐴))
1716ne0d 4269 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (𝐼𝐴) ≠ ∅)
18 eqid 2738 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
192, 18ressplusg 17000 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (+g𝑅) = (+g𝑆))
20 eqid 2738 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
212, 20ressmulr 17017 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
2221oveqd 7292 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (𝑥(.r𝑅)𝑎) = (𝑥(.r𝑆)𝑎))
23 eqidd 2739 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑏 = 𝑏)
2419, 22, 23oveq123d 7296 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) = ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏))
2524ad4antr 729 . . . . . 6 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) = ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏))
266ad4antr 729 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑅 ∈ Ring)
27 simp-4r 781 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝐼𝑈)
28 eqid 2738 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
2928subrgss 20025 . . . . . . . . . . . . 13 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
303, 29eqsstrrd 3960 . . . . . . . . . . . 12 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅))
3130adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (Base‘𝑆) ⊆ (Base‘𝑅))
3231sselda 3921 . . . . . . . . . 10 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑅))
3332ad2antrr 723 . . . . . . . . 9 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑥 ∈ (Base‘𝑅))
34 inss1 4162 . . . . . . . . . . . 12 (𝐼𝐴) ⊆ 𝐼
3534a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐼𝐴) ⊆ 𝐼)
3635sselda 3921 . . . . . . . . . 10 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) → 𝑎𝐼)
3736adantr 481 . . . . . . . . 9 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑎𝐼)
387, 28, 20lidlmcl 20488 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝐼)) → (𝑥(.r𝑅)𝑎) ∈ 𝐼)
3926, 27, 33, 37, 38syl22anc 836 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → (𝑥(.r𝑅)𝑎) ∈ 𝐼)
4034a1i 11 . . . . . . . . 9 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) → (𝐼𝐴) ⊆ 𝐼)
4140sselda 3921 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑏𝐼)
427, 18lidlacl 20484 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ ((𝑥(.r𝑅)𝑎) ∈ 𝐼𝑏𝐼)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐼)
4326, 27, 39, 41, 42syl22anc 836 . . . . . . 7 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐼)
44 simp-4l 780 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝐴 ∈ (SubRing‘𝑅))
45 simpr 485 . . . . . . . . . . 11 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
463ad2antrr 723 . . . . . . . . . . 11 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝐴 = (Base‘𝑆))
4745, 46eleqtrrd 2842 . . . . . . . . . 10 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥𝐴)
4847ad2antrr 723 . . . . . . . . 9 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑥𝐴)
491a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐼𝐴) ⊆ 𝐴)
5049sselda 3921 . . . . . . . . . 10 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) → 𝑎𝐴)
5150adantr 481 . . . . . . . . 9 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑎𝐴)
5220subrgmcl 20036 . . . . . . . . 9 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝐴𝑎𝐴) → (𝑥(.r𝑅)𝑎) ∈ 𝐴)
5344, 48, 51, 52syl3anc 1370 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → (𝑥(.r𝑅)𝑎) ∈ 𝐴)
541a1i 11 . . . . . . . . 9 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) → (𝐼𝐴) ⊆ 𝐴)
5554sselda 3921 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑏𝐴)
5618subrgacl 20035 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑥(.r𝑅)𝑎) ∈ 𝐴𝑏𝐴) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐴)
5744, 53, 55, 56syl3anc 1370 . . . . . . 7 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐴)
5843, 57elind 4128 . . . . . 6 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐼𝐴))
5925, 58eqeltrrd 2840 . . . . 5 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴))
6059anasss 467 . . . 4 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ (𝑎 ∈ (𝐼𝐴) ∧ 𝑏 ∈ (𝐼𝐴))) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴))
6160ralrimivva 3123 . . 3 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → ∀𝑎 ∈ (𝐼𝐴)∀𝑏 ∈ (𝐼𝐴)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴))
6261ralrimiva 3103 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → ∀𝑥 ∈ (Base‘𝑆)∀𝑎 ∈ (𝐼𝐴)∀𝑏 ∈ (𝐼𝐴)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴))
63 idlinsubrg.v . . 3 𝑉 = (LIdeal‘𝑆)
64 eqid 2738 . . 3 (Base‘𝑆) = (Base‘𝑆)
65 eqid 2738 . . 3 (+g𝑆) = (+g𝑆)
66 eqid 2738 . . 3 (.r𝑆) = (.r𝑆)
6763, 64, 65, 66islidl 20482 . 2 ((𝐼𝐴) ∈ 𝑉 ↔ ((𝐼𝐴) ⊆ (Base‘𝑆) ∧ (𝐼𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑎 ∈ (𝐼𝐴)∀𝑏 ∈ (𝐼𝐴)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴)))
685, 17, 62, 67syl3anbrc 1342 1 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (𝐼𝐴) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  cin 3886  wss 3887  c0 4256  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  +gcplusg 16962  .rcmulr 16963  0gc0g 17150  SubMndcsubmnd 18429  SubGrpcsubg 18749  Ringcrg 19783  SubRingcsubrg 20020  LIdealclidl 20432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-mgp 19721  df-ur 19738  df-ring 19785  df-subrg 20022  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-lidl 20436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator