Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlinsubrg Structured version   Visualization version   GIF version

Theorem idlinsubrg 33424
Description: The intersection between an ideal and a subring is an ideal of the subring. (Contributed by Thierry Arnoux, 6-Jul-2024.)
Hypotheses
Ref Expression
idlinsubrg.s 𝑆 = (𝑅s 𝐴)
idlinsubrg.u 𝑈 = (LIdeal‘𝑅)
idlinsubrg.v 𝑉 = (LIdeal‘𝑆)
Assertion
Ref Expression
idlinsubrg ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (𝐼𝐴) ∈ 𝑉)

Proof of Theorem idlinsubrg
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 4259 . . . 4 (𝐼𝐴) ⊆ 𝐴
2 idlinsubrg.s . . . . 5 𝑆 = (𝑅s 𝐴)
32subrgbas 20609 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
41, 3sseqtrid 4061 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝐼𝐴) ⊆ (Base‘𝑆))
54adantr 480 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (𝐼𝐴) ⊆ (Base‘𝑆))
6 subrgrcl 20604 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
7 idlinsubrg.u . . . . . 6 𝑈 = (LIdeal‘𝑅)
8 eqid 2740 . . . . . 6 (0g𝑅) = (0g𝑅)
97, 8lidl0cl 21253 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (0g𝑅) ∈ 𝐼)
106, 9sylan 579 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (0g𝑅) ∈ 𝐼)
11 subrgsubg 20605 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
12 subgsubm 19188 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 ∈ (SubMnd‘𝑅))
138subm0cl 18846 . . . . . 6 (𝐴 ∈ (SubMnd‘𝑅) → (0g𝑅) ∈ 𝐴)
1411, 12, 133syl 18 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (0g𝑅) ∈ 𝐴)
1514adantr 480 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (0g𝑅) ∈ 𝐴)
1610, 15elind 4223 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (0g𝑅) ∈ (𝐼𝐴))
1716ne0d 4365 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (𝐼𝐴) ≠ ∅)
18 eqid 2740 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
192, 18ressplusg 17349 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (+g𝑅) = (+g𝑆))
20 eqid 2740 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
212, 20ressmulr 17366 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
2221oveqd 7465 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (𝑥(.r𝑅)𝑎) = (𝑥(.r𝑆)𝑎))
23 eqidd 2741 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑏 = 𝑏)
2419, 22, 23oveq123d 7469 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) = ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏))
2524ad4antr 731 . . . . . 6 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) = ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏))
266ad4antr 731 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑅 ∈ Ring)
27 simp-4r 783 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝐼𝑈)
28 eqid 2740 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
2928subrgss 20600 . . . . . . . . . . . . 13 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
303, 29eqsstrrd 4048 . . . . . . . . . . . 12 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅))
3130adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (Base‘𝑆) ⊆ (Base‘𝑅))
3231sselda 4008 . . . . . . . . . 10 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑅))
3332ad2antrr 725 . . . . . . . . 9 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑥 ∈ (Base‘𝑅))
34 inss1 4258 . . . . . . . . . . . 12 (𝐼𝐴) ⊆ 𝐼
3534a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐼𝐴) ⊆ 𝐼)
3635sselda 4008 . . . . . . . . . 10 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) → 𝑎𝐼)
3736adantr 480 . . . . . . . . 9 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑎𝐼)
387, 28, 20lidlmcl 21258 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝐼)) → (𝑥(.r𝑅)𝑎) ∈ 𝐼)
3926, 27, 33, 37, 38syl22anc 838 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → (𝑥(.r𝑅)𝑎) ∈ 𝐼)
4034a1i 11 . . . . . . . . 9 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) → (𝐼𝐴) ⊆ 𝐼)
4140sselda 4008 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑏𝐼)
427, 18lidlacl 21254 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ ((𝑥(.r𝑅)𝑎) ∈ 𝐼𝑏𝐼)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐼)
4326, 27, 39, 41, 42syl22anc 838 . . . . . . 7 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐼)
44 simp-4l 782 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝐴 ∈ (SubRing‘𝑅))
45 simpr 484 . . . . . . . . . . 11 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
463ad2antrr 725 . . . . . . . . . . 11 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝐴 = (Base‘𝑆))
4745, 46eleqtrrd 2847 . . . . . . . . . 10 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥𝐴)
4847ad2antrr 725 . . . . . . . . 9 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑥𝐴)
491a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐼𝐴) ⊆ 𝐴)
5049sselda 4008 . . . . . . . . . 10 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) → 𝑎𝐴)
5150adantr 480 . . . . . . . . 9 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑎𝐴)
5220subrgmcl 20612 . . . . . . . . 9 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝐴𝑎𝐴) → (𝑥(.r𝑅)𝑎) ∈ 𝐴)
5344, 48, 51, 52syl3anc 1371 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → (𝑥(.r𝑅)𝑎) ∈ 𝐴)
541a1i 11 . . . . . . . . 9 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) → (𝐼𝐴) ⊆ 𝐴)
5554sselda 4008 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑏𝐴)
5618subrgacl 20611 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑥(.r𝑅)𝑎) ∈ 𝐴𝑏𝐴) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐴)
5744, 53, 55, 56syl3anc 1371 . . . . . . 7 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐴)
5843, 57elind 4223 . . . . . 6 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐼𝐴))
5925, 58eqeltrrd 2845 . . . . 5 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴))
6059anasss 466 . . . 4 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ (𝑎 ∈ (𝐼𝐴) ∧ 𝑏 ∈ (𝐼𝐴))) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴))
6160ralrimivva 3208 . . 3 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → ∀𝑎 ∈ (𝐼𝐴)∀𝑏 ∈ (𝐼𝐴)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴))
6261ralrimiva 3152 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → ∀𝑥 ∈ (Base‘𝑆)∀𝑎 ∈ (𝐼𝐴)∀𝑏 ∈ (𝐼𝐴)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴))
63 idlinsubrg.v . . 3 𝑉 = (LIdeal‘𝑆)
64 eqid 2740 . . 3 (Base‘𝑆) = (Base‘𝑆)
65 eqid 2740 . . 3 (+g𝑆) = (+g𝑆)
66 eqid 2740 . . 3 (.r𝑆) = (.r𝑆)
6763, 64, 65, 66islidl 21248 . 2 ((𝐼𝐴) ∈ 𝑉 ↔ ((𝐼𝐴) ⊆ (Base‘𝑆) ∧ (𝐼𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑎 ∈ (𝐼𝐴)∀𝑏 ∈ (𝐼𝐴)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴)))
685, 17, 62, 67syl3anbrc 1343 1 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (𝐼𝐴) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  cin 3975  wss 3976  c0 4352  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  +gcplusg 17311  .rcmulr 17312  0gc0g 17499  SubMndcsubmnd 18817  SubGrpcsubg 19160  Ringcrg 20260  SubRingcsubrg 20595  LIdealclidl 21239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-lidl 21241
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator