Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlinsubrg Structured version   Visualization version   GIF version

Theorem idlinsubrg 33375
Description: The intersection between an ideal and a subring is an ideal of the subring. (Contributed by Thierry Arnoux, 6-Jul-2024.)
Hypotheses
Ref Expression
idlinsubrg.s 𝑆 = (𝑅s 𝐴)
idlinsubrg.u 𝑈 = (LIdeal‘𝑅)
idlinsubrg.v 𝑉 = (LIdeal‘𝑆)
Assertion
Ref Expression
idlinsubrg ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (𝐼𝐴) ∈ 𝑉)

Proof of Theorem idlinsubrg
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 4197 . . . 4 (𝐼𝐴) ⊆ 𝐴
2 idlinsubrg.s . . . . 5 𝑆 = (𝑅s 𝐴)
32subrgbas 20466 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
41, 3sseqtrid 3986 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝐼𝐴) ⊆ (Base‘𝑆))
54adantr 480 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (𝐼𝐴) ⊆ (Base‘𝑆))
6 subrgrcl 20461 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
7 idlinsubrg.u . . . . . 6 𝑈 = (LIdeal‘𝑅)
8 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
97, 8lidl0cl 21106 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (0g𝑅) ∈ 𝐼)
106, 9sylan 580 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (0g𝑅) ∈ 𝐼)
11 subrgsubg 20462 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
12 subgsubm 19056 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 ∈ (SubMnd‘𝑅))
138subm0cl 18714 . . . . . 6 (𝐴 ∈ (SubMnd‘𝑅) → (0g𝑅) ∈ 𝐴)
1411, 12, 133syl 18 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (0g𝑅) ∈ 𝐴)
1514adantr 480 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (0g𝑅) ∈ 𝐴)
1610, 15elind 4159 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (0g𝑅) ∈ (𝐼𝐴))
1716ne0d 4301 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (𝐼𝐴) ≠ ∅)
18 eqid 2729 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
192, 18ressplusg 17230 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (+g𝑅) = (+g𝑆))
20 eqid 2729 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
212, 20ressmulr 17246 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
2221oveqd 7386 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (𝑥(.r𝑅)𝑎) = (𝑥(.r𝑆)𝑎))
23 eqidd 2730 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑏 = 𝑏)
2419, 22, 23oveq123d 7390 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) = ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏))
2524ad4antr 732 . . . . . 6 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) = ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏))
266ad4antr 732 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑅 ∈ Ring)
27 simp-4r 783 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝐼𝑈)
28 eqid 2729 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
2928subrgss 20457 . . . . . . . . . . . . 13 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
303, 29eqsstrrd 3979 . . . . . . . . . . . 12 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅))
3130adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (Base‘𝑆) ⊆ (Base‘𝑅))
3231sselda 3943 . . . . . . . . . 10 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑅))
3332ad2antrr 726 . . . . . . . . 9 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑥 ∈ (Base‘𝑅))
34 inss1 4196 . . . . . . . . . . . 12 (𝐼𝐴) ⊆ 𝐼
3534a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐼𝐴) ⊆ 𝐼)
3635sselda 3943 . . . . . . . . . 10 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) → 𝑎𝐼)
3736adantr 480 . . . . . . . . 9 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑎𝐼)
387, 28, 20lidlmcl 21111 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝐼)) → (𝑥(.r𝑅)𝑎) ∈ 𝐼)
3926, 27, 33, 37, 38syl22anc 838 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → (𝑥(.r𝑅)𝑎) ∈ 𝐼)
4034a1i 11 . . . . . . . . 9 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) → (𝐼𝐴) ⊆ 𝐼)
4140sselda 3943 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑏𝐼)
427, 18lidlacl 21107 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ ((𝑥(.r𝑅)𝑎) ∈ 𝐼𝑏𝐼)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐼)
4326, 27, 39, 41, 42syl22anc 838 . . . . . . 7 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐼)
44 simp-4l 782 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝐴 ∈ (SubRing‘𝑅))
45 simpr 484 . . . . . . . . . . 11 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
463ad2antrr 726 . . . . . . . . . . 11 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝐴 = (Base‘𝑆))
4745, 46eleqtrrd 2831 . . . . . . . . . 10 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥𝐴)
4847ad2antrr 726 . . . . . . . . 9 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑥𝐴)
491a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐼𝐴) ⊆ 𝐴)
5049sselda 3943 . . . . . . . . . 10 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) → 𝑎𝐴)
5150adantr 480 . . . . . . . . 9 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑎𝐴)
5220subrgmcl 20469 . . . . . . . . 9 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝐴𝑎𝐴) → (𝑥(.r𝑅)𝑎) ∈ 𝐴)
5344, 48, 51, 52syl3anc 1373 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → (𝑥(.r𝑅)𝑎) ∈ 𝐴)
541a1i 11 . . . . . . . . 9 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) → (𝐼𝐴) ⊆ 𝐴)
5554sselda 3943 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑏𝐴)
5618subrgacl 20468 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑥(.r𝑅)𝑎) ∈ 𝐴𝑏𝐴) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐴)
5744, 53, 55, 56syl3anc 1373 . . . . . . 7 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐴)
5843, 57elind 4159 . . . . . 6 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐼𝐴))
5925, 58eqeltrrd 2829 . . . . 5 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴))
6059anasss 466 . . . 4 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ (𝑎 ∈ (𝐼𝐴) ∧ 𝑏 ∈ (𝐼𝐴))) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴))
6160ralrimivva 3178 . . 3 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → ∀𝑎 ∈ (𝐼𝐴)∀𝑏 ∈ (𝐼𝐴)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴))
6261ralrimiva 3125 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → ∀𝑥 ∈ (Base‘𝑆)∀𝑎 ∈ (𝐼𝐴)∀𝑏 ∈ (𝐼𝐴)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴))
63 idlinsubrg.v . . 3 𝑉 = (LIdeal‘𝑆)
64 eqid 2729 . . 3 (Base‘𝑆) = (Base‘𝑆)
65 eqid 2729 . . 3 (+g𝑆) = (+g𝑆)
66 eqid 2729 . . 3 (.r𝑆) = (.r𝑆)
6763, 64, 65, 66islidl 21101 . 2 ((𝐼𝐴) ∈ 𝑉 ↔ ((𝐼𝐴) ⊆ (Base‘𝑆) ∧ (𝐼𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑎 ∈ (𝐼𝐴)∀𝑏 ∈ (𝐼𝐴)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴)))
685, 17, 62, 67syl3anbrc 1344 1 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (𝐼𝐴) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  cin 3910  wss 3911  c0 4292  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176  +gcplusg 17196  .rcmulr 17197  0gc0g 17378  SubMndcsubmnd 18685  SubGrpcsubg 19028  Ringcrg 20118  SubRingcsubrg 20454  LIdealclidl 21092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-subrng 20431  df-subrg 20455  df-lmod 20744  df-lss 20814  df-sra 21056  df-rgmod 21057  df-lidl 21094
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator