Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlinsubrg Structured version   Visualization version   GIF version

Theorem idlinsubrg 33368
Description: The intersection between an ideal and a subring is an ideal of the subring. (Contributed by Thierry Arnoux, 6-Jul-2024.)
Hypotheses
Ref Expression
idlinsubrg.s 𝑆 = (𝑅s 𝐴)
idlinsubrg.u 𝑈 = (LIdeal‘𝑅)
idlinsubrg.v 𝑉 = (LIdeal‘𝑆)
Assertion
Ref Expression
idlinsubrg ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (𝐼𝐴) ∈ 𝑉)

Proof of Theorem idlinsubrg
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 4189 . . . 4 (𝐼𝐴) ⊆ 𝐴
2 idlinsubrg.s . . . . 5 𝑆 = (𝑅s 𝐴)
32subrgbas 20466 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
41, 3sseqtrid 3978 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝐼𝐴) ⊆ (Base‘𝑆))
54adantr 480 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (𝐼𝐴) ⊆ (Base‘𝑆))
6 subrgrcl 20461 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
7 idlinsubrg.u . . . . . 6 𝑈 = (LIdeal‘𝑅)
8 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
97, 8lidl0cl 21127 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (0g𝑅) ∈ 𝐼)
106, 9sylan 580 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (0g𝑅) ∈ 𝐼)
11 subrgsubg 20462 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
12 subgsubm 19027 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 ∈ (SubMnd‘𝑅))
138subm0cl 18685 . . . . . 6 (𝐴 ∈ (SubMnd‘𝑅) → (0g𝑅) ∈ 𝐴)
1411, 12, 133syl 18 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (0g𝑅) ∈ 𝐴)
1514adantr 480 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (0g𝑅) ∈ 𝐴)
1610, 15elind 4151 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (0g𝑅) ∈ (𝐼𝐴))
1716ne0d 4293 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (𝐼𝐴) ≠ ∅)
18 eqid 2729 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
192, 18ressplusg 17195 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (+g𝑅) = (+g𝑆))
20 eqid 2729 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
212, 20ressmulr 17211 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
2221oveqd 7366 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (𝑥(.r𝑅)𝑎) = (𝑥(.r𝑆)𝑎))
23 eqidd 2730 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑏 = 𝑏)
2419, 22, 23oveq123d 7370 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) = ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏))
2524ad4antr 732 . . . . . 6 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) = ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏))
266ad4antr 732 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑅 ∈ Ring)
27 simp-4r 783 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝐼𝑈)
28 eqid 2729 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
2928subrgss 20457 . . . . . . . . . . . . 13 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
303, 29eqsstrrd 3971 . . . . . . . . . . . 12 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅))
3130adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (Base‘𝑆) ⊆ (Base‘𝑅))
3231sselda 3935 . . . . . . . . . 10 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑅))
3332ad2antrr 726 . . . . . . . . 9 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑥 ∈ (Base‘𝑅))
34 inss1 4188 . . . . . . . . . . . 12 (𝐼𝐴) ⊆ 𝐼
3534a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐼𝐴) ⊆ 𝐼)
3635sselda 3935 . . . . . . . . . 10 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) → 𝑎𝐼)
3736adantr 480 . . . . . . . . 9 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑎𝐼)
387, 28, 20lidlmcl 21132 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝐼)) → (𝑥(.r𝑅)𝑎) ∈ 𝐼)
3926, 27, 33, 37, 38syl22anc 838 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → (𝑥(.r𝑅)𝑎) ∈ 𝐼)
4034a1i 11 . . . . . . . . 9 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) → (𝐼𝐴) ⊆ 𝐼)
4140sselda 3935 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑏𝐼)
427, 18lidlacl 21128 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ ((𝑥(.r𝑅)𝑎) ∈ 𝐼𝑏𝐼)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐼)
4326, 27, 39, 41, 42syl22anc 838 . . . . . . 7 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐼)
44 simp-4l 782 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝐴 ∈ (SubRing‘𝑅))
45 simpr 484 . . . . . . . . . . 11 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
463ad2antrr 726 . . . . . . . . . . 11 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝐴 = (Base‘𝑆))
4745, 46eleqtrrd 2831 . . . . . . . . . 10 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥𝐴)
4847ad2antrr 726 . . . . . . . . 9 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑥𝐴)
491a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐼𝐴) ⊆ 𝐴)
5049sselda 3935 . . . . . . . . . 10 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) → 𝑎𝐴)
5150adantr 480 . . . . . . . . 9 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑎𝐴)
5220subrgmcl 20469 . . . . . . . . 9 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝐴𝑎𝐴) → (𝑥(.r𝑅)𝑎) ∈ 𝐴)
5344, 48, 51, 52syl3anc 1373 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → (𝑥(.r𝑅)𝑎) ∈ 𝐴)
541a1i 11 . . . . . . . . 9 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) → (𝐼𝐴) ⊆ 𝐴)
5554sselda 3935 . . . . . . . 8 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → 𝑏𝐴)
5618subrgacl 20468 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑥(.r𝑅)𝑎) ∈ 𝐴𝑏𝐴) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐴)
5744, 53, 55, 56syl3anc 1373 . . . . . . 7 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐴)
5843, 57elind 4151 . . . . . 6 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ (𝐼𝐴))
5925, 58eqeltrrd 2829 . . . . 5 (((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑎 ∈ (𝐼𝐴)) ∧ 𝑏 ∈ (𝐼𝐴)) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴))
6059anasss 466 . . . 4 ((((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ (𝑎 ∈ (𝐼𝐴) ∧ 𝑏 ∈ (𝐼𝐴))) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴))
6160ralrimivva 3172 . . 3 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑆)) → ∀𝑎 ∈ (𝐼𝐴)∀𝑏 ∈ (𝐼𝐴)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴))
6261ralrimiva 3121 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → ∀𝑥 ∈ (Base‘𝑆)∀𝑎 ∈ (𝐼𝐴)∀𝑏 ∈ (𝐼𝐴)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴))
63 idlinsubrg.v . . 3 𝑉 = (LIdeal‘𝑆)
64 eqid 2729 . . 3 (Base‘𝑆) = (Base‘𝑆)
65 eqid 2729 . . 3 (+g𝑆) = (+g𝑆)
66 eqid 2729 . . 3 (.r𝑆) = (.r𝑆)
6763, 64, 65, 66islidl 21122 . 2 ((𝐼𝐴) ∈ 𝑉 ↔ ((𝐼𝐴) ⊆ (Base‘𝑆) ∧ (𝐼𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑎 ∈ (𝐼𝐴)∀𝑏 ∈ (𝐼𝐴)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐼𝐴)))
685, 17, 62, 67syl3anbrc 1344 1 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼𝑈) → (𝐼𝐴) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  cin 3902  wss 3903  c0 4284  cfv 6482  (class class class)co 7349  Basecbs 17120  s cress 17141  +gcplusg 17161  .rcmulr 17162  0gc0g 17343  SubMndcsubmnd 18656  SubGrpcsubg 18999  Ringcrg 20118  SubRingcsubrg 20454  LIdealclidl 21113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-subrng 20431  df-subrg 20455  df-lmod 20765  df-lss 20835  df-sra 21077  df-rgmod 21078  df-lidl 21115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator