MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgmvrf Structured version   Visualization version   GIF version

Theorem subrgmvrf 22075
Description: The variables in a polynomial algebra are contained in every subring algebra. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
subrgmvr.v 𝑉 = (𝐼 mVar 𝑅)
subrgmvr.i (𝜑𝐼𝑊)
subrgmvr.r (𝜑𝑇 ∈ (SubRing‘𝑅))
subrgmvr.h 𝐻 = (𝑅s 𝑇)
subrgmvrf.u 𝑈 = (𝐼 mPoly 𝐻)
subrgmvrf.b 𝐵 = (Base‘𝑈)
Assertion
Ref Expression
subrgmvrf (𝜑𝑉:𝐼𝐵)

Proof of Theorem subrgmvrf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . 4 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
2 subrgmvr.v . . . 4 𝑉 = (𝐼 mVar 𝑅)
3 eqid 2740 . . . 4 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
4 subrgmvr.i . . . 4 (𝜑𝐼𝑊)
5 subrgmvr.r . . . . 5 (𝜑𝑇 ∈ (SubRing‘𝑅))
6 subrgrcl 20604 . . . . 5 (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
75, 6syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
81, 2, 3, 4, 7mvrf 22028 . . 3 (𝜑𝑉:𝐼⟶(Base‘(𝐼 mPwSer 𝑅)))
98ffnd 6748 . 2 (𝜑𝑉 Fn 𝐼)
10 subrgmvr.h . . . . . . 7 𝐻 = (𝑅s 𝑇)
112, 4, 5, 10subrgmvr 22074 . . . . . 6 (𝜑𝑉 = (𝐼 mVar 𝐻))
1211fveq1d 6922 . . . . 5 (𝜑 → (𝑉𝑥) = ((𝐼 mVar 𝐻)‘𝑥))
1312adantr 480 . . . 4 ((𝜑𝑥𝐼) → (𝑉𝑥) = ((𝐼 mVar 𝐻)‘𝑥))
14 subrgmvrf.u . . . . 5 𝑈 = (𝐼 mPoly 𝐻)
15 eqid 2740 . . . . 5 (𝐼 mVar 𝐻) = (𝐼 mVar 𝐻)
16 subrgmvrf.b . . . . 5 𝐵 = (Base‘𝑈)
174adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝐼𝑊)
1810subrgring 20602 . . . . . . 7 (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring)
195, 18syl 17 . . . . . 6 (𝜑𝐻 ∈ Ring)
2019adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝐻 ∈ Ring)
21 simpr 484 . . . . 5 ((𝜑𝑥𝐼) → 𝑥𝐼)
2214, 15, 16, 17, 20, 21mvrcl 22035 . . . 4 ((𝜑𝑥𝐼) → ((𝐼 mVar 𝐻)‘𝑥) ∈ 𝐵)
2313, 22eqeltrd 2844 . . 3 ((𝜑𝑥𝐼) → (𝑉𝑥) ∈ 𝐵)
2423ralrimiva 3152 . 2 (𝜑 → ∀𝑥𝐼 (𝑉𝑥) ∈ 𝐵)
25 ffnfv 7153 . 2 (𝑉:𝐼𝐵 ↔ (𝑉 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑉𝑥) ∈ 𝐵))
269, 24, 25sylanbrc 582 1 (𝜑𝑉:𝐼𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  Ringcrg 20260  SubRingcsubrg 20595   mPwSer cmps 21947   mVar cmvr 21948   mPoly cmpl 21949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-tset 17330  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-subg 19163  df-mgp 20162  df-ur 20209  df-ring 20262  df-subrg 20597  df-psr 21952  df-mvr 21953  df-mpl 21954
This theorem is referenced by:  subrgvr1cl  22286
  Copyright terms: Public domain W3C validator