Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgmvrf | Structured version Visualization version GIF version |
Description: The variables in a polynomial algebra are contained in every subring algebra. (Contributed by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
subrgmvr.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
subrgmvr.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
subrgmvr.r | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
subrgmvr.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
subrgmvrf.u | ⊢ 𝑈 = (𝐼 mPoly 𝐻) |
subrgmvrf.b | ⊢ 𝐵 = (Base‘𝑈) |
Ref | Expression |
---|---|
subrgmvrf | ⊢ (𝜑 → 𝑉:𝐼⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
2 | subrgmvr.v | . . . 4 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
3 | eqid 2738 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
4 | subrgmvr.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | subrgmvr.r | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
6 | subrgrcl 19659 | . . . . 5 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
8 | 1, 2, 3, 4, 7 | mvrf 20803 | . . 3 ⊢ (𝜑 → 𝑉:𝐼⟶(Base‘(𝐼 mPwSer 𝑅))) |
9 | 8 | ffnd 6505 | . 2 ⊢ (𝜑 → 𝑉 Fn 𝐼) |
10 | subrgmvr.h | . . . . . . 7 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
11 | 2, 4, 5, 10 | subrgmvr 20844 | . . . . . 6 ⊢ (𝜑 → 𝑉 = (𝐼 mVar 𝐻)) |
12 | 11 | fveq1d 6676 | . . . . 5 ⊢ (𝜑 → (𝑉‘𝑥) = ((𝐼 mVar 𝐻)‘𝑥)) |
13 | 12 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑉‘𝑥) = ((𝐼 mVar 𝐻)‘𝑥)) |
14 | subrgmvrf.u | . . . . 5 ⊢ 𝑈 = (𝐼 mPoly 𝐻) | |
15 | eqid 2738 | . . . . 5 ⊢ (𝐼 mVar 𝐻) = (𝐼 mVar 𝐻) | |
16 | subrgmvrf.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑈) | |
17 | 4 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
18 | 10 | subrgring 19657 | . . . . . . 7 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring) |
19 | 5, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ Ring) |
20 | 19 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐻 ∈ Ring) |
21 | simpr 488 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) | |
22 | 14, 15, 16, 17, 20, 21 | mvrcl 20831 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐼 mVar 𝐻)‘𝑥) ∈ 𝐵) |
23 | 13, 22 | eqeltrd 2833 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑉‘𝑥) ∈ 𝐵) |
24 | 23 | ralrimiva 3096 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝑉‘𝑥) ∈ 𝐵) |
25 | ffnfv 6892 | . 2 ⊢ (𝑉:𝐼⟶𝐵 ↔ (𝑉 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑉‘𝑥) ∈ 𝐵)) | |
26 | 9, 24, 25 | sylanbrc 586 | 1 ⊢ (𝜑 → 𝑉:𝐼⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3053 Fn wfn 6334 ⟶wf 6335 ‘cfv 6339 (class class class)co 7170 Basecbs 16586 ↾s cress 16587 Ringcrg 19416 SubRingcsubrg 19650 mPwSer cmps 20717 mVar cmvr 20718 mPoly cmpl 20719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-of 7425 df-om 7600 df-1st 7714 df-2nd 7715 df-supp 7857 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-map 8439 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-fsupp 8907 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-uz 12325 df-fz 12982 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-sca 16684 df-vsca 16685 df-tset 16687 df-0g 16818 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-grp 18222 df-subg 18394 df-mgp 19359 df-ur 19371 df-ring 19418 df-subrg 19652 df-psr 20722 df-mvr 20723 df-mpl 20724 |
This theorem is referenced by: subrgvr1cl 21037 |
Copyright terms: Public domain | W3C validator |