| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgsubg | Structured version Visualization version GIF version | ||
| Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.) |
| Ref | Expression |
|---|---|
| subrgsubg | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgrcl 20534 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 2 | ringgrp 20196 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Grp) |
| 4 | eqid 2735 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | 4 | subrgss 20530 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 6 | eqid 2735 | . . . 4 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
| 7 | 6 | subrgring 20532 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
| 8 | ringgrp 20196 | . . 3 ⊢ ((𝑅 ↾s 𝐴) ∈ Ring → (𝑅 ↾s 𝐴) ∈ Grp) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Grp) |
| 10 | 4 | issubg 19107 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ Grp)) |
| 11 | 3, 5, 9, 10 | syl3anbrc 1344 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3926 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 ↾s cress 17249 Grpcgrp 18914 SubGrpcsubg 19101 Ringcrg 20191 SubRingcsubrg 20527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fv 6538 df-ov 7406 df-subg 19104 df-ring 20193 df-subrg 20528 |
| This theorem is referenced by: subrg0 20537 subrgbas 20539 subrgacl 20541 issubrg2 20550 subrgint 20553 resrhm 20559 resrhm2b 20560 rhmima 20562 subdrgint 20761 primefld0cl 20764 abvres 20789 zsssubrg 21391 gzrngunitlem 21398 zringlpirlem1 21421 zringcyg 21428 zringsubgval 21429 prmirred 21433 zndvds 21508 resubgval 21567 rzgrp 21581 issubassa2 21850 resspsrmul 21934 subrgpsr 21936 mplbas2 21998 gsumply1subr 22167 subrgnrg 24610 sranlm 24621 clmsub 25029 clmneg 25030 clmabs 25032 clmsubcl 25035 isncvsngp 25099 cphsqrtcl3 25137 tcphcph 25187 plypf1 26167 dvply2g 26242 dvply2gOLD 26243 taylply2 26325 taylply2OLD 26326 circgrp 26511 circsubm 26512 jensenlem2 26948 amgmlem 26950 lgseisenlem4 27339 qrng0 27582 qrngneg 27584 subrgchr 33178 elrgspnlem4 33186 elrgspnsubrunlem2 33189 subrdom 33225 1fldgenq 33262 nn0archi 33308 idlinsubrg 33392 ressply1evls1 33524 ressply10g 33526 ressply1invg 33528 ressply1sub 33529 evls1subd 33531 vr1nz 33549 drgext0gsca 33577 fedgmullem1 33615 fedgmullem2 33616 evls1fldgencl 33657 fldextrspunlsplem 33660 fldextrspunlsp 33661 irngss 33674 algextdeglem1 33697 algextdeglem2 33698 algextdeglem3 33699 algextdeglem4 33700 algextdeglem5 33701 rtelextdg2lem 33706 constrelextdg2 33727 2sqr3minply 33760 rezh 33946 qqhcn 33968 qqhucn 33969 fsumcnsrcl 43137 cnsrplycl 43138 rngunsnply 43140 amgmwlem 49614 |
| Copyright terms: Public domain | W3C validator |