| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgsubg | Structured version Visualization version GIF version | ||
| Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.) |
| Ref | Expression |
|---|---|
| subrgsubg | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgrcl 20492 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 2 | ringgrp 20157 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Grp) |
| 4 | eqid 2731 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | 4 | subrgss 20488 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 6 | eqid 2731 | . . . 4 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
| 7 | 6 | subrgring 20490 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
| 8 | ringgrp 20157 | . . 3 ⊢ ((𝑅 ↾s 𝐴) ∈ Ring → (𝑅 ↾s 𝐴) ∈ Grp) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Grp) |
| 10 | 4 | issubg 19039 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ Grp)) |
| 11 | 3, 5, 9, 10 | syl3anbrc 1344 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3902 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 Grpcgrp 18846 SubGrpcsubg 19033 Ringcrg 20152 SubRingcsubrg 20485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-subg 19036 df-ring 20154 df-subrg 20486 |
| This theorem is referenced by: subrg0 20495 subrgbas 20497 subrgacl 20499 issubrg2 20508 subrgint 20511 resrhm 20517 resrhm2b 20518 rhmima 20520 subdrgint 20719 primefld0cl 20722 abvres 20747 zsssubrg 21363 gzrngunitlem 21370 zringlpirlem1 21400 zringcyg 21407 zringsubgval 21408 prmirred 21412 zndvds 21487 resubgval 21547 rzgrp 21561 issubassa2 21830 resspsrmul 21914 subrgpsr 21916 mplbas2 21978 gsumply1subr 22147 subrgnrg 24589 sranlm 24600 clmsub 25008 clmneg 25009 clmabs 25011 clmsubcl 25014 isncvsngp 25077 cphsqrtcl3 25115 tcphcph 25165 plypf1 26145 dvply2g 26220 dvply2gOLD 26221 taylply2 26303 taylply2OLD 26304 circgrp 26489 circsubm 26490 jensenlem2 26926 amgmlem 26928 lgseisenlem4 27317 qrng0 27560 qrngneg 27562 subrgchr 33202 elrgspnlem4 33210 elrgspnsubrunlem2 33213 subrdom 33249 1fldgenq 33286 nn0archi 33310 idlinsubrg 33394 ressply1evls1 33526 ressply10g 33528 ressply1invg 33530 ressply1sub 33531 evls1subd 33533 vr1nz 33552 drgext0gsca 33602 fedgmullem1 33640 fedgmullem2 33641 evls1fldgencl 33681 fldextrspunlsplem 33684 fldextrspunlsp 33685 irngss 33698 extdgfialglem1 33703 extdgfialglem2 33704 algextdeglem1 33728 algextdeglem2 33729 algextdeglem3 33730 algextdeglem4 33731 algextdeglem5 33732 rtelextdg2lem 33737 constrelextdg2 33758 2sqr3minply 33791 rezh 33980 qqhcn 34002 qqhucn 34003 fsumcnsrcl 43205 cnsrplycl 43206 rngunsnply 43208 amgmwlem 49840 |
| Copyright terms: Public domain | W3C validator |