Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgsubg | Structured version Visualization version GIF version |
Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.) |
Ref | Expression |
---|---|
subrgsubg | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgrcl 19944 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
2 | ringgrp 19703 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Grp) |
4 | eqid 2738 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | 4 | subrgss 19940 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
6 | eqid 2738 | . . . 4 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
7 | 6 | subrgring 19942 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
8 | ringgrp 19703 | . . 3 ⊢ ((𝑅 ↾s 𝐴) ∈ Ring → (𝑅 ↾s 𝐴) ∈ Grp) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Grp) |
10 | 4 | issubg 18670 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ Grp)) |
11 | 3, 5, 9, 10 | syl3anbrc 1341 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 Grpcgrp 18492 SubGrpcsubg 18664 Ringcrg 19698 SubRingcsubrg 19935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-subg 18667 df-ring 19700 df-subrg 19937 |
This theorem is referenced by: subrg0 19946 subrgbas 19948 subrgacl 19950 issubrg2 19959 subrgint 19961 resrhm 19968 rhmima 19970 subdrgint 19986 primefld0cl 19989 abvres 20014 zsssubrg 20568 gzrngunitlem 20575 zringlpirlem1 20596 zringcyg 20603 zringsubgval 20604 prmirred 20608 zndvds 20669 resubgval 20726 rzgrp 20740 issubassa2 21006 resspsrmul 21096 subrgpsr 21098 mplbas2 21153 gsumply1subr 21315 subrgnrg 23743 sranlm 23754 clmsub 24149 clmneg 24150 clmabs 24152 clmsubcl 24155 isncvsngp 24218 cphsqrtcl3 24256 tcphcph 24306 plypf1 25278 dvply2g 25350 taylply2 25432 circgrp 25613 circsubm 25614 jensenlem2 26042 amgmlem 26044 lgseisenlem4 26431 qrng0 26674 qrngneg 26676 subrgchr 31393 nn0archi 31449 idlinsubrg 31510 drgext0gsca 31581 fedgmullem1 31612 fedgmullem2 31613 rezh 31821 qqhcn 31841 qqhucn 31842 selvval2lem4 40154 fsumcnsrcl 40907 cnsrplycl 40908 rngunsnply 40914 amgmwlem 46392 |
Copyright terms: Public domain | W3C validator |