MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgsubg Structured version   Visualization version   GIF version

Theorem subrgsubg 20030
Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.)
Assertion
Ref Expression
subrgsubg (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))

Proof of Theorem subrgsubg
StepHypRef Expression
1 subrgrcl 20029 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
2 ringgrp 19788 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
31, 2syl 17 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Grp)
4 eqid 2738 . . 3 (Base‘𝑅) = (Base‘𝑅)
54subrgss 20025 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
6 eqid 2738 . . . 4 (𝑅s 𝐴) = (𝑅s 𝐴)
76subrgring 20027 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝑅s 𝐴) ∈ Ring)
8 ringgrp 19788 . . 3 ((𝑅s 𝐴) ∈ Ring → (𝑅s 𝐴) ∈ Grp)
97, 8syl 17 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑅s 𝐴) ∈ Grp)
104issubg 18755 . 2 (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Grp))
113, 5, 9, 10syl3anbrc 1342 1 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wss 3887  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  Grpcgrp 18577  SubGrpcsubg 18749  Ringcrg 19783  SubRingcsubrg 20020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-subg 18752  df-ring 19785  df-subrg 20022
This theorem is referenced by:  subrg0  20031  subrgbas  20033  subrgacl  20035  issubrg2  20044  subrgint  20046  resrhm  20053  rhmima  20055  subdrgint  20071  primefld0cl  20074  abvres  20099  zsssubrg  20656  gzrngunitlem  20663  zringlpirlem1  20684  zringcyg  20691  zringsubgval  20692  prmirred  20696  zndvds  20757  resubgval  20814  rzgrp  20828  issubassa2  21096  resspsrmul  21186  subrgpsr  21188  mplbas2  21243  gsumply1subr  21405  subrgnrg  23837  sranlm  23848  clmsub  24243  clmneg  24244  clmabs  24246  clmsubcl  24249  isncvsngp  24313  cphsqrtcl3  24351  tcphcph  24401  plypf1  25373  dvply2g  25445  taylply2  25527  circgrp  25708  circsubm  25709  jensenlem2  26137  amgmlem  26139  lgseisenlem4  26526  qrng0  26769  qrngneg  26771  subrgchr  31491  nn0archi  31547  idlinsubrg  31608  drgext0gsca  31679  fedgmullem1  31710  fedgmullem2  31711  rezh  31921  qqhcn  31941  qqhucn  31942  selvval2lem4  40228  fsumcnsrcl  40991  cnsrplycl  40992  rngunsnply  40998  amgmwlem  46506
  Copyright terms: Public domain W3C validator