| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgsubg | Structured version Visualization version GIF version | ||
| Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.) |
| Ref | Expression |
|---|---|
| subrgsubg | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgrcl 20495 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 2 | ringgrp 20160 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Grp) |
| 4 | eqid 2733 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | 4 | subrgss 20491 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 6 | eqid 2733 | . . . 4 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
| 7 | 6 | subrgring 20493 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
| 8 | ringgrp 20160 | . . 3 ⊢ ((𝑅 ↾s 𝐴) ∈ Ring → (𝑅 ↾s 𝐴) ∈ Grp) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Grp) |
| 10 | 4 | issubg 19043 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ Grp)) |
| 11 | 3, 5, 9, 10 | syl3anbrc 1344 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ⊆ wss 3898 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 ↾s cress 17145 Grpcgrp 18850 SubGrpcsubg 19037 Ringcrg 20155 SubRingcsubrg 20488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fv 6496 df-ov 7357 df-subg 19040 df-ring 20157 df-subrg 20489 |
| This theorem is referenced by: subrg0 20498 subrgbas 20500 subrgacl 20502 issubrg2 20511 subrgint 20514 resrhm 20520 resrhm2b 20521 rhmima 20523 subdrgint 20722 primefld0cl 20725 abvres 20750 zsssubrg 21366 gzrngunitlem 21373 zringlpirlem1 21403 zringcyg 21410 zringsubgval 21411 prmirred 21415 zndvds 21490 resubgval 21550 rzgrp 21564 issubassa2 21833 resspsrmul 21916 subrgpsr 21918 mplbas2 21980 gsumply1subr 22149 subrgnrg 24591 sranlm 24602 clmsub 25010 clmneg 25011 clmabs 25013 clmsubcl 25016 isncvsngp 25079 cphsqrtcl3 25117 tcphcph 25167 plypf1 26147 dvply2g 26222 dvply2gOLD 26223 taylply2 26305 taylply2OLD 26306 circgrp 26491 circsubm 26492 jensenlem2 26928 amgmlem 26930 lgseisenlem4 27319 qrng0 27562 qrngneg 27564 subrgchr 33213 elrgspnlem4 33221 elrgspnsubrunlem2 33224 subrdom 33260 1fldgenq 33297 nn0archi 33321 idlinsubrg 33405 ressply1evls1 33537 ressply10g 33539 ressply1invg 33541 ressply1sub 33542 evls1subd 33544 vr1nz 33563 drgext0gsca 33627 fedgmullem1 33665 fedgmullem2 33666 evls1fldgencl 33706 fldextrspunlsplem 33709 fldextrspunlsp 33710 irngss 33723 extdgfialglem1 33728 extdgfialglem2 33729 algextdeglem1 33753 algextdeglem2 33754 algextdeglem3 33755 algextdeglem4 33756 algextdeglem5 33757 rtelextdg2lem 33762 constrelextdg2 33783 2sqr3minply 33816 rezh 34005 qqhcn 34027 qqhucn 34028 fsumcnsrcl 43286 cnsrplycl 43287 rngunsnply 43289 amgmwlem 49930 |
| Copyright terms: Public domain | W3C validator |