Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgsubg | Structured version Visualization version GIF version |
Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.) |
Ref | Expression |
---|---|
subrgsubg | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgrcl 20029 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
2 | ringgrp 19788 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Grp) |
4 | eqid 2738 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | 4 | subrgss 20025 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
6 | eqid 2738 | . . . 4 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
7 | 6 | subrgring 20027 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
8 | ringgrp 19788 | . . 3 ⊢ ((𝑅 ↾s 𝐴) ∈ Ring → (𝑅 ↾s 𝐴) ∈ Grp) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Grp) |
10 | 4 | issubg 18755 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ Grp)) |
11 | 3, 5, 9, 10 | syl3anbrc 1342 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 ↾s cress 16941 Grpcgrp 18577 SubGrpcsubg 18749 Ringcrg 19783 SubRingcsubrg 20020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-subg 18752 df-ring 19785 df-subrg 20022 |
This theorem is referenced by: subrg0 20031 subrgbas 20033 subrgacl 20035 issubrg2 20044 subrgint 20046 resrhm 20053 rhmima 20055 subdrgint 20071 primefld0cl 20074 abvres 20099 zsssubrg 20656 gzrngunitlem 20663 zringlpirlem1 20684 zringcyg 20691 zringsubgval 20692 prmirred 20696 zndvds 20757 resubgval 20814 rzgrp 20828 issubassa2 21096 resspsrmul 21186 subrgpsr 21188 mplbas2 21243 gsumply1subr 21405 subrgnrg 23837 sranlm 23848 clmsub 24243 clmneg 24244 clmabs 24246 clmsubcl 24249 isncvsngp 24313 cphsqrtcl3 24351 tcphcph 24401 plypf1 25373 dvply2g 25445 taylply2 25527 circgrp 25708 circsubm 25709 jensenlem2 26137 amgmlem 26139 lgseisenlem4 26526 qrng0 26769 qrngneg 26771 subrgchr 31491 nn0archi 31547 idlinsubrg 31608 drgext0gsca 31679 fedgmullem1 31710 fedgmullem2 31711 rezh 31921 qqhcn 31941 qqhucn 31942 selvval2lem4 40228 fsumcnsrcl 40991 cnsrplycl 40992 rngunsnply 40998 amgmwlem 46506 |
Copyright terms: Public domain | W3C validator |