MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgsubg Structured version   Visualization version   GIF version

Theorem subrgsubg 20496
Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.)
Assertion
Ref Expression
subrgsubg (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))

Proof of Theorem subrgsubg
StepHypRef Expression
1 subrgrcl 20495 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
2 ringgrp 20160 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
31, 2syl 17 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Grp)
4 eqid 2733 . . 3 (Base‘𝑅) = (Base‘𝑅)
54subrgss 20491 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
6 eqid 2733 . . . 4 (𝑅s 𝐴) = (𝑅s 𝐴)
76subrgring 20493 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝑅s 𝐴) ∈ Ring)
8 ringgrp 20160 . . 3 ((𝑅s 𝐴) ∈ Ring → (𝑅s 𝐴) ∈ Grp)
97, 8syl 17 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑅s 𝐴) ∈ Grp)
104issubg 19043 . 2 (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Grp))
113, 5, 9, 10syl3anbrc 1344 1 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  wss 3898  cfv 6488  (class class class)co 7354  Basecbs 17124  s cress 17145  Grpcgrp 18850  SubGrpcsubg 19037  Ringcrg 20155  SubRingcsubrg 20488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fv 6496  df-ov 7357  df-subg 19040  df-ring 20157  df-subrg 20489
This theorem is referenced by:  subrg0  20498  subrgbas  20500  subrgacl  20502  issubrg2  20511  subrgint  20514  resrhm  20520  resrhm2b  20521  rhmima  20523  subdrgint  20722  primefld0cl  20725  abvres  20750  zsssubrg  21366  gzrngunitlem  21373  zringlpirlem1  21403  zringcyg  21410  zringsubgval  21411  prmirred  21415  zndvds  21490  resubgval  21550  rzgrp  21564  issubassa2  21833  resspsrmul  21916  subrgpsr  21918  mplbas2  21980  gsumply1subr  22149  subrgnrg  24591  sranlm  24602  clmsub  25010  clmneg  25011  clmabs  25013  clmsubcl  25016  isncvsngp  25079  cphsqrtcl3  25117  tcphcph  25167  plypf1  26147  dvply2g  26222  dvply2gOLD  26223  taylply2  26305  taylply2OLD  26306  circgrp  26491  circsubm  26492  jensenlem2  26928  amgmlem  26930  lgseisenlem4  27319  qrng0  27562  qrngneg  27564  subrgchr  33213  elrgspnlem4  33221  elrgspnsubrunlem2  33224  subrdom  33260  1fldgenq  33297  nn0archi  33321  idlinsubrg  33405  ressply1evls1  33537  ressply10g  33539  ressply1invg  33541  ressply1sub  33542  evls1subd  33544  vr1nz  33563  drgext0gsca  33627  fedgmullem1  33665  fedgmullem2  33666  evls1fldgencl  33706  fldextrspunlsplem  33709  fldextrspunlsp  33710  irngss  33723  extdgfialglem1  33728  extdgfialglem2  33729  algextdeglem1  33753  algextdeglem2  33754  algextdeglem3  33755  algextdeglem4  33756  algextdeglem5  33757  rtelextdg2lem  33762  constrelextdg2  33783  2sqr3minply  33816  rezh  34005  qqhcn  34027  qqhucn  34028  fsumcnsrcl  43286  cnsrplycl  43287  rngunsnply  43289  amgmwlem  49930
  Copyright terms: Public domain W3C validator