| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgsubg | Structured version Visualization version GIF version | ||
| Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.) |
| Ref | Expression |
|---|---|
| subrgsubg | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgrcl 20485 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 2 | ringgrp 20147 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Grp) |
| 4 | eqid 2729 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | 4 | subrgss 20481 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 6 | eqid 2729 | . . . 4 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
| 7 | 6 | subrgring 20483 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
| 8 | ringgrp 20147 | . . 3 ⊢ ((𝑅 ↾s 𝐴) ∈ Ring → (𝑅 ↾s 𝐴) ∈ Grp) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Grp) |
| 10 | 4 | issubg 19058 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ Grp)) |
| 11 | 3, 5, 9, 10 | syl3anbrc 1344 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 Grpcgrp 18865 SubGrpcsubg 19052 Ringcrg 20142 SubRingcsubrg 20478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-subg 19055 df-ring 20144 df-subrg 20479 |
| This theorem is referenced by: subrg0 20488 subrgbas 20490 subrgacl 20492 issubrg2 20501 subrgint 20504 resrhm 20510 resrhm2b 20511 rhmima 20513 subdrgint 20712 primefld0cl 20715 abvres 20740 zsssubrg 21342 gzrngunitlem 21349 zringlpirlem1 21372 zringcyg 21379 zringsubgval 21380 prmirred 21384 zndvds 21459 resubgval 21518 rzgrp 21532 issubassa2 21801 resspsrmul 21885 subrgpsr 21887 mplbas2 21949 gsumply1subr 22118 subrgnrg 24561 sranlm 24572 clmsub 24980 clmneg 24981 clmabs 24983 clmsubcl 24986 isncvsngp 25049 cphsqrtcl3 25087 tcphcph 25137 plypf1 26117 dvply2g 26192 dvply2gOLD 26193 taylply2 26275 taylply2OLD 26276 circgrp 26461 circsubm 26462 jensenlem2 26898 amgmlem 26900 lgseisenlem4 27289 qrng0 27532 qrngneg 27534 subrgchr 33188 elrgspnlem4 33196 elrgspnsubrunlem2 33199 subrdom 33235 1fldgenq 33272 nn0archi 33318 idlinsubrg 33402 ressply1evls1 33534 ressply10g 33536 ressply1invg 33538 ressply1sub 33539 evls1subd 33541 vr1nz 33559 drgext0gsca 33587 fedgmullem1 33625 fedgmullem2 33626 evls1fldgencl 33665 fldextrspunlsplem 33668 fldextrspunlsp 33669 irngss 33682 algextdeglem1 33707 algextdeglem2 33708 algextdeglem3 33709 algextdeglem4 33710 algextdeglem5 33711 rtelextdg2lem 33716 constrelextdg2 33737 2sqr3minply 33770 rezh 33959 qqhcn 33981 qqhucn 33982 fsumcnsrcl 43155 cnsrplycl 43156 rngunsnply 43158 amgmwlem 49791 |
| Copyright terms: Public domain | W3C validator |