MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgsubg Structured version   Visualization version   GIF version

Theorem subrgsubg 20486
Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.)
Assertion
Ref Expression
subrgsubg (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))

Proof of Theorem subrgsubg
StepHypRef Expression
1 subrgrcl 20485 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
2 ringgrp 20147 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
31, 2syl 17 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Grp)
4 eqid 2729 . . 3 (Base‘𝑅) = (Base‘𝑅)
54subrgss 20481 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
6 eqid 2729 . . . 4 (𝑅s 𝐴) = (𝑅s 𝐴)
76subrgring 20483 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝑅s 𝐴) ∈ Ring)
8 ringgrp 20147 . . 3 ((𝑅s 𝐴) ∈ Ring → (𝑅s 𝐴) ∈ Grp)
97, 8syl 17 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑅s 𝐴) ∈ Grp)
104issubg 19058 . 2 (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Grp))
113, 5, 9, 10syl3anbrc 1344 1 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3914  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  Grpcgrp 18865  SubGrpcsubg 19052  Ringcrg 20142  SubRingcsubrg 20478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-subg 19055  df-ring 20144  df-subrg 20479
This theorem is referenced by:  subrg0  20488  subrgbas  20490  subrgacl  20492  issubrg2  20501  subrgint  20504  resrhm  20510  resrhm2b  20511  rhmima  20513  subdrgint  20712  primefld0cl  20715  abvres  20740  zsssubrg  21342  gzrngunitlem  21349  zringlpirlem1  21372  zringcyg  21379  zringsubgval  21380  prmirred  21384  zndvds  21459  resubgval  21518  rzgrp  21532  issubassa2  21801  resspsrmul  21885  subrgpsr  21887  mplbas2  21949  gsumply1subr  22118  subrgnrg  24561  sranlm  24572  clmsub  24980  clmneg  24981  clmabs  24983  clmsubcl  24986  isncvsngp  25049  cphsqrtcl3  25087  tcphcph  25137  plypf1  26117  dvply2g  26192  dvply2gOLD  26193  taylply2  26275  taylply2OLD  26276  circgrp  26461  circsubm  26462  jensenlem2  26898  amgmlem  26900  lgseisenlem4  27289  qrng0  27532  qrngneg  27534  subrgchr  33188  elrgspnlem4  33196  elrgspnsubrunlem2  33199  subrdom  33235  1fldgenq  33272  nn0archi  33318  idlinsubrg  33402  ressply1evls1  33534  ressply10g  33536  ressply1invg  33538  ressply1sub  33539  evls1subd  33541  vr1nz  33559  drgext0gsca  33587  fedgmullem1  33625  fedgmullem2  33626  evls1fldgencl  33665  fldextrspunlsplem  33668  fldextrspunlsp  33669  irngss  33682  algextdeglem1  33707  algextdeglem2  33708  algextdeglem3  33709  algextdeglem4  33710  algextdeglem5  33711  rtelextdg2lem  33716  constrelextdg2  33737  2sqr3minply  33770  rezh  33959  qqhcn  33981  qqhucn  33982  fsumcnsrcl  43155  cnsrplycl  43156  rngunsnply  43158  amgmwlem  49791
  Copyright terms: Public domain W3C validator