![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrgsubg | Structured version Visualization version GIF version |
Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.) |
Ref | Expression |
---|---|
subrgsubg | β’ (π΄ β (SubRingβπ ) β π΄ β (SubGrpβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgrcl 20467 | . . 3 β’ (π΄ β (SubRingβπ ) β π β Ring) | |
2 | ringgrp 20133 | . . 3 β’ (π β Ring β π β Grp) | |
3 | 1, 2 | syl 17 | . 2 β’ (π΄ β (SubRingβπ ) β π β Grp) |
4 | eqid 2731 | . . 3 β’ (Baseβπ ) = (Baseβπ ) | |
5 | 4 | subrgss 20463 | . 2 β’ (π΄ β (SubRingβπ ) β π΄ β (Baseβπ )) |
6 | eqid 2731 | . . . 4 β’ (π βΎs π΄) = (π βΎs π΄) | |
7 | 6 | subrgring 20465 | . . 3 β’ (π΄ β (SubRingβπ ) β (π βΎs π΄) β Ring) |
8 | ringgrp 20133 | . . 3 β’ ((π βΎs π΄) β Ring β (π βΎs π΄) β Grp) | |
9 | 7, 8 | syl 17 | . 2 β’ (π΄ β (SubRingβπ ) β (π βΎs π΄) β Grp) |
10 | 4 | issubg 19043 | . 2 β’ (π΄ β (SubGrpβπ ) β (π β Grp β§ π΄ β (Baseβπ ) β§ (π βΎs π΄) β Grp)) |
11 | 3, 5, 9, 10 | syl3anbrc 1342 | 1 β’ (π΄ β (SubRingβπ ) β π΄ β (SubGrpβπ )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2105 β wss 3948 βcfv 6543 (class class class)co 7412 Basecbs 17149 βΎs cress 17178 Grpcgrp 18856 SubGrpcsubg 19037 Ringcrg 20128 SubRingcsubrg 20458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-subg 19040 df-ring 20130 df-subrg 20460 |
This theorem is referenced by: subrg0 20470 subrgbas 20472 subrgacl 20474 issubrg2 20483 subrgint 20486 resrhm 20492 resrhm2b 20493 rhmima 20495 subdrgint 20563 primefld0cl 20566 abvres 20591 zsssubrg 21204 gzrngunitlem 21211 zringlpirlem1 21234 zringcyg 21241 zringsubgval 21242 prmirred 21246 zndvds 21325 resubgval 21382 rzgrp 21396 issubassa2 21666 resspsrmul 21757 subrgpsr 21759 mplbas2 21817 gsumply1subr 21977 subrgnrg 24411 sranlm 24422 clmsub 24828 clmneg 24829 clmabs 24831 clmsubcl 24834 isncvsngp 24898 cphsqrtcl3 24936 tcphcph 24986 plypf1 25962 dvply2g 26035 taylply2 26117 circgrp 26298 circsubm 26299 jensenlem2 26729 amgmlem 26731 lgseisenlem4 27118 qrng0 27361 qrngneg 27363 subrgchr 32657 1fldgenq 32683 nn0archi 32733 idlinsubrg 32824 ressply10g 32931 ressply1invg 32933 ressply1sub 32934 drgext0gsca 32967 fedgmullem1 33003 fedgmullem2 33004 evls1fldgencl 33034 irngss 33041 algextdeglem1 33063 algextdeglem2 33064 algextdeglem3 33065 algextdeglem4 33066 algextdeglem5 33067 rezh 33250 qqhcn 33270 qqhucn 33271 fsumcnsrcl 42211 cnsrplycl 42212 rngunsnply 42218 amgmwlem 47937 |
Copyright terms: Public domain | W3C validator |