| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgsubg | Structured version Visualization version GIF version | ||
| Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.) |
| Ref | Expression |
|---|---|
| subrgsubg | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgrcl 20479 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 2 | ringgrp 20141 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Grp) |
| 4 | eqid 2729 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | 4 | subrgss 20475 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 6 | eqid 2729 | . . . 4 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
| 7 | 6 | subrgring 20477 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
| 8 | ringgrp 20141 | . . 3 ⊢ ((𝑅 ↾s 𝐴) ∈ Ring → (𝑅 ↾s 𝐴) ∈ Grp) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Grp) |
| 10 | 4 | issubg 19023 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ Grp)) |
| 11 | 3, 5, 9, 10 | syl3anbrc 1344 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3905 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 ↾s cress 17159 Grpcgrp 18830 SubGrpcsubg 19017 Ringcrg 20136 SubRingcsubrg 20472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-subg 19020 df-ring 20138 df-subrg 20473 |
| This theorem is referenced by: subrg0 20482 subrgbas 20484 subrgacl 20486 issubrg2 20495 subrgint 20498 resrhm 20504 resrhm2b 20505 rhmima 20507 subdrgint 20706 primefld0cl 20709 abvres 20734 zsssubrg 21350 gzrngunitlem 21357 zringlpirlem1 21387 zringcyg 21394 zringsubgval 21395 prmirred 21399 zndvds 21474 resubgval 21534 rzgrp 21548 issubassa2 21817 resspsrmul 21901 subrgpsr 21903 mplbas2 21965 gsumply1subr 22134 subrgnrg 24577 sranlm 24588 clmsub 24996 clmneg 24997 clmabs 24999 clmsubcl 25002 isncvsngp 25065 cphsqrtcl3 25103 tcphcph 25153 plypf1 26133 dvply2g 26208 dvply2gOLD 26209 taylply2 26291 taylply2OLD 26292 circgrp 26477 circsubm 26478 jensenlem2 26914 amgmlem 26916 lgseisenlem4 27305 qrng0 27548 qrngneg 27550 subrgchr 33190 elrgspnlem4 33198 elrgspnsubrunlem2 33201 subrdom 33237 1fldgenq 33274 nn0archi 33297 idlinsubrg 33381 ressply1evls1 33513 ressply10g 33515 ressply1invg 33517 ressply1sub 33518 evls1subd 33520 vr1nz 33538 drgext0gsca 33566 fedgmullem1 33604 fedgmullem2 33605 evls1fldgencl 33644 fldextrspunlsplem 33647 fldextrspunlsp 33648 irngss 33661 algextdeglem1 33686 algextdeglem2 33687 algextdeglem3 33688 algextdeglem4 33689 algextdeglem5 33690 rtelextdg2lem 33695 constrelextdg2 33716 2sqr3minply 33749 rezh 33938 qqhcn 33960 qqhucn 33961 fsumcnsrcl 43142 cnsrplycl 43143 rngunsnply 43145 amgmwlem 49791 |
| Copyright terms: Public domain | W3C validator |