MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgsubg Structured version   Visualization version   GIF version

Theorem subrgsubg 20535
Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.)
Assertion
Ref Expression
subrgsubg (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))

Proof of Theorem subrgsubg
StepHypRef Expression
1 subrgrcl 20534 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
2 ringgrp 20196 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
31, 2syl 17 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Grp)
4 eqid 2735 . . 3 (Base‘𝑅) = (Base‘𝑅)
54subrgss 20530 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
6 eqid 2735 . . . 4 (𝑅s 𝐴) = (𝑅s 𝐴)
76subrgring 20532 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝑅s 𝐴) ∈ Ring)
8 ringgrp 20196 . . 3 ((𝑅s 𝐴) ∈ Ring → (𝑅s 𝐴) ∈ Grp)
97, 8syl 17 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑅s 𝐴) ∈ Grp)
104issubg 19107 . 2 (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Grp))
113, 5, 9, 10syl3anbrc 1344 1 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3926  cfv 6530  (class class class)co 7403  Basecbs 17226  s cress 17249  Grpcgrp 18914  SubGrpcsubg 19101  Ringcrg 20191  SubRingcsubrg 20527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fv 6538  df-ov 7406  df-subg 19104  df-ring 20193  df-subrg 20528
This theorem is referenced by:  subrg0  20537  subrgbas  20539  subrgacl  20541  issubrg2  20550  subrgint  20553  resrhm  20559  resrhm2b  20560  rhmima  20562  subdrgint  20761  primefld0cl  20764  abvres  20789  zsssubrg  21391  gzrngunitlem  21398  zringlpirlem1  21421  zringcyg  21428  zringsubgval  21429  prmirred  21433  zndvds  21508  resubgval  21567  rzgrp  21581  issubassa2  21850  resspsrmul  21934  subrgpsr  21936  mplbas2  21998  gsumply1subr  22167  subrgnrg  24610  sranlm  24621  clmsub  25029  clmneg  25030  clmabs  25032  clmsubcl  25035  isncvsngp  25099  cphsqrtcl3  25137  tcphcph  25187  plypf1  26167  dvply2g  26242  dvply2gOLD  26243  taylply2  26325  taylply2OLD  26326  circgrp  26511  circsubm  26512  jensenlem2  26948  amgmlem  26950  lgseisenlem4  27339  qrng0  27582  qrngneg  27584  subrgchr  33178  elrgspnlem4  33186  elrgspnsubrunlem2  33189  subrdom  33225  1fldgenq  33262  nn0archi  33308  idlinsubrg  33392  ressply1evls1  33524  ressply10g  33526  ressply1invg  33528  ressply1sub  33529  evls1subd  33531  vr1nz  33549  drgext0gsca  33577  fedgmullem1  33615  fedgmullem2  33616  evls1fldgencl  33657  fldextrspunlsplem  33660  fldextrspunlsp  33661  irngss  33674  algextdeglem1  33697  algextdeglem2  33698  algextdeglem3  33699  algextdeglem4  33700  algextdeglem5  33701  rtelextdg2lem  33706  constrelextdg2  33727  2sqr3minply  33760  rezh  33946  qqhcn  33968  qqhucn  33969  fsumcnsrcl  43137  cnsrplycl  43138  rngunsnply  43140  amgmwlem  49614
  Copyright terms: Public domain W3C validator