| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgsubg | Structured version Visualization version GIF version | ||
| Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.) |
| Ref | Expression |
|---|---|
| subrgsubg | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgrcl 20492 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 2 | ringgrp 20154 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Grp) |
| 4 | eqid 2730 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | 4 | subrgss 20488 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 6 | eqid 2730 | . . . 4 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
| 7 | 6 | subrgring 20490 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
| 8 | ringgrp 20154 | . . 3 ⊢ ((𝑅 ↾s 𝐴) ∈ Ring → (𝑅 ↾s 𝐴) ∈ Grp) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Grp) |
| 10 | 4 | issubg 19065 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ Grp)) |
| 11 | 3, 5, 9, 10 | syl3anbrc 1344 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 ↾s cress 17207 Grpcgrp 18872 SubGrpcsubg 19059 Ringcrg 20149 SubRingcsubrg 20485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-subg 19062 df-ring 20151 df-subrg 20486 |
| This theorem is referenced by: subrg0 20495 subrgbas 20497 subrgacl 20499 issubrg2 20508 subrgint 20511 resrhm 20517 resrhm2b 20518 rhmima 20520 subdrgint 20719 primefld0cl 20722 abvres 20747 zsssubrg 21349 gzrngunitlem 21356 zringlpirlem1 21379 zringcyg 21386 zringsubgval 21387 prmirred 21391 zndvds 21466 resubgval 21525 rzgrp 21539 issubassa2 21808 resspsrmul 21892 subrgpsr 21894 mplbas2 21956 gsumply1subr 22125 subrgnrg 24568 sranlm 24579 clmsub 24987 clmneg 24988 clmabs 24990 clmsubcl 24993 isncvsngp 25056 cphsqrtcl3 25094 tcphcph 25144 plypf1 26124 dvply2g 26199 dvply2gOLD 26200 taylply2 26282 taylply2OLD 26283 circgrp 26468 circsubm 26469 jensenlem2 26905 amgmlem 26907 lgseisenlem4 27296 qrng0 27539 qrngneg 27541 subrgchr 33195 elrgspnlem4 33203 elrgspnsubrunlem2 33206 subrdom 33242 1fldgenq 33279 nn0archi 33325 idlinsubrg 33409 ressply1evls1 33541 ressply10g 33543 ressply1invg 33545 ressply1sub 33546 evls1subd 33548 vr1nz 33566 drgext0gsca 33594 fedgmullem1 33632 fedgmullem2 33633 evls1fldgencl 33672 fldextrspunlsplem 33675 fldextrspunlsp 33676 irngss 33689 algextdeglem1 33714 algextdeglem2 33715 algextdeglem3 33716 algextdeglem4 33717 algextdeglem5 33718 rtelextdg2lem 33723 constrelextdg2 33744 2sqr3minply 33777 rezh 33966 qqhcn 33988 qqhucn 33989 fsumcnsrcl 43162 cnsrplycl 43163 rngunsnply 43165 amgmwlem 49795 |
| Copyright terms: Public domain | W3C validator |