![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrgsubg | Structured version Visualization version GIF version |
Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.) |
Ref | Expression |
---|---|
subrgsubg | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgrcl 20592 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
2 | ringgrp 20255 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Grp) |
4 | eqid 2734 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | 4 | subrgss 20588 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
6 | eqid 2734 | . . . 4 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
7 | 6 | subrgring 20590 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
8 | ringgrp 20255 | . . 3 ⊢ ((𝑅 ↾s 𝐴) ∈ Ring → (𝑅 ↾s 𝐴) ∈ Grp) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Grp) |
10 | 4 | issubg 19156 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ Grp)) |
11 | 3, 5, 9, 10 | syl3anbrc 1342 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ⊆ wss 3962 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 ↾s cress 17273 Grpcgrp 18963 SubGrpcsubg 19150 Ringcrg 20250 SubRingcsubrg 20585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fv 6570 df-ov 7433 df-subg 19153 df-ring 20252 df-subrg 20586 |
This theorem is referenced by: subrg0 20595 subrgbas 20597 subrgacl 20599 issubrg2 20608 subrgint 20611 resrhm 20617 resrhm2b 20618 rhmima 20620 subdrgint 20820 primefld0cl 20823 abvres 20848 zsssubrg 21460 gzrngunitlem 21467 zringlpirlem1 21490 zringcyg 21497 zringsubgval 21498 prmirred 21502 zndvds 21585 resubgval 21644 rzgrp 21658 issubassa2 21929 resspsrmul 22013 subrgpsr 22015 mplbas2 22077 gsumply1subr 22250 subrgnrg 24709 sranlm 24720 clmsub 25126 clmneg 25127 clmabs 25129 clmsubcl 25132 isncvsngp 25196 cphsqrtcl3 25234 tcphcph 25284 plypf1 26265 dvply2g 26340 dvply2gOLD 26341 taylply2 26423 taylply2OLD 26424 circgrp 26608 circsubm 26609 jensenlem2 27045 amgmlem 27047 lgseisenlem4 27436 qrng0 27679 qrngneg 27681 subrgchr 33226 elrgspnlem4 33234 subrdom 33268 1fldgenq 33303 nn0archi 33354 idlinsubrg 33438 ressply10g 33571 ressply1invg 33573 ressply1sub 33574 evls1subd 33576 drgext0gsca 33620 fedgmullem1 33656 fedgmullem2 33657 evls1fldgencl 33694 irngss 33701 algextdeglem1 33722 algextdeglem2 33723 algextdeglem3 33724 algextdeglem4 33725 algextdeglem5 33726 rtelextdg2lem 33731 constrelextdg2 33751 2sqr3minply 33752 rezh 33931 qqhcn 33953 qqhucn 33954 fsumcnsrcl 43154 cnsrplycl 43155 rngunsnply 43157 amgmwlem 49032 |
Copyright terms: Public domain | W3C validator |