MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgsubg Structured version   Visualization version   GIF version

Theorem subrgsubg 20480
Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.)
Assertion
Ref Expression
subrgsubg (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))

Proof of Theorem subrgsubg
StepHypRef Expression
1 subrgrcl 20479 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
2 ringgrp 20141 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
31, 2syl 17 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Grp)
4 eqid 2729 . . 3 (Base‘𝑅) = (Base‘𝑅)
54subrgss 20475 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
6 eqid 2729 . . . 4 (𝑅s 𝐴) = (𝑅s 𝐴)
76subrgring 20477 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝑅s 𝐴) ∈ Ring)
8 ringgrp 20141 . . 3 ((𝑅s 𝐴) ∈ Ring → (𝑅s 𝐴) ∈ Grp)
97, 8syl 17 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑅s 𝐴) ∈ Grp)
104issubg 19023 . 2 (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Grp))
113, 5, 9, 10syl3anbrc 1344 1 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3905  cfv 6486  (class class class)co 7353  Basecbs 17138  s cress 17159  Grpcgrp 18830  SubGrpcsubg 19017  Ringcrg 20136  SubRingcsubrg 20472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-subg 19020  df-ring 20138  df-subrg 20473
This theorem is referenced by:  subrg0  20482  subrgbas  20484  subrgacl  20486  issubrg2  20495  subrgint  20498  resrhm  20504  resrhm2b  20505  rhmima  20507  subdrgint  20706  primefld0cl  20709  abvres  20734  zsssubrg  21350  gzrngunitlem  21357  zringlpirlem1  21387  zringcyg  21394  zringsubgval  21395  prmirred  21399  zndvds  21474  resubgval  21534  rzgrp  21548  issubassa2  21817  resspsrmul  21901  subrgpsr  21903  mplbas2  21965  gsumply1subr  22134  subrgnrg  24577  sranlm  24588  clmsub  24996  clmneg  24997  clmabs  24999  clmsubcl  25002  isncvsngp  25065  cphsqrtcl3  25103  tcphcph  25153  plypf1  26133  dvply2g  26208  dvply2gOLD  26209  taylply2  26291  taylply2OLD  26292  circgrp  26477  circsubm  26478  jensenlem2  26914  amgmlem  26916  lgseisenlem4  27305  qrng0  27548  qrngneg  27550  subrgchr  33190  elrgspnlem4  33198  elrgspnsubrunlem2  33201  subrdom  33237  1fldgenq  33274  nn0archi  33297  idlinsubrg  33381  ressply1evls1  33513  ressply10g  33515  ressply1invg  33517  ressply1sub  33518  evls1subd  33520  vr1nz  33538  drgext0gsca  33566  fedgmullem1  33604  fedgmullem2  33605  evls1fldgencl  33644  fldextrspunlsplem  33647  fldextrspunlsp  33648  irngss  33661  algextdeglem1  33686  algextdeglem2  33687  algextdeglem3  33688  algextdeglem4  33689  algextdeglem5  33690  rtelextdg2lem  33695  constrelextdg2  33716  2sqr3minply  33749  rezh  33938  qqhcn  33960  qqhucn  33961  fsumcnsrcl  43142  cnsrplycl  43143  rngunsnply  43145  amgmwlem  49791
  Copyright terms: Public domain W3C validator