Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgsubg | Structured version Visualization version GIF version |
Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.) |
Ref | Expression |
---|---|
subrgsubg | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgrcl 20133 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
2 | ringgrp 19882 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Grp) |
4 | eqid 2737 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | 4 | subrgss 20129 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
6 | eqid 2737 | . . . 4 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
7 | 6 | subrgring 20131 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
8 | ringgrp 19882 | . . 3 ⊢ ((𝑅 ↾s 𝐴) ∈ Ring → (𝑅 ↾s 𝐴) ∈ Grp) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Grp) |
10 | 4 | issubg 18851 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ Grp)) |
11 | 3, 5, 9, 10 | syl3anbrc 1343 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3901 ‘cfv 6483 (class class class)co 7341 Basecbs 17009 ↾s cress 17038 Grpcgrp 18673 SubGrpcsubg 18845 Ringcrg 19877 SubRingcsubrg 20124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3731 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-iota 6435 df-fun 6485 df-fv 6491 df-ov 7344 df-subg 18848 df-ring 19879 df-subrg 20126 |
This theorem is referenced by: subrg0 20135 subrgbas 20137 subrgacl 20139 issubrg2 20148 subrgint 20150 resrhm 20157 rhmima 20159 subdrgint 20176 primefld0cl 20179 abvres 20204 zsssubrg 20761 gzrngunitlem 20768 zringlpirlem1 20789 zringcyg 20796 zringsubgval 20797 prmirred 20801 zndvds 20862 resubgval 20919 rzgrp 20933 issubassa2 21201 resspsrmul 21291 subrgpsr 21293 mplbas2 21348 gsumply1subr 21510 subrgnrg 23942 sranlm 23953 clmsub 24348 clmneg 24349 clmabs 24351 clmsubcl 24354 isncvsngp 24418 cphsqrtcl3 24456 tcphcph 24506 plypf1 25478 dvply2g 25550 taylply2 25632 circgrp 25813 circsubm 25814 jensenlem2 26242 amgmlem 26244 lgseisenlem4 26631 qrng0 26874 qrngneg 26876 subrgchr 31776 1fldgenq 31791 nn0archi 31841 idlinsubrg 31903 drgext0gsca 31975 fedgmullem1 32006 fedgmullem2 32007 rezh 32217 qqhcn 32237 qqhucn 32238 selvval2lem4 40533 fsumcnsrcl 41305 cnsrplycl 41306 rngunsnply 41312 amgmwlem 46924 |
Copyright terms: Public domain | W3C validator |