Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgsubm Structured version   Visualization version   GIF version

Theorem subrgsubm 19544
 Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
subrgsubm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
subrgsubm (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀))

Proof of Theorem subrgsubm
StepHypRef Expression
1 eqid 2798 . . 3 (Base‘𝑅) = (Base‘𝑅)
21subrgss 19532 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
3 eqid 2798 . . 3 (1r𝑅) = (1r𝑅)
43subrg1cl 19539 . 2 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝐴)
5 subrgrcl 19536 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
6 eqid 2798 . . . . 5 (𝑅s 𝐴) = (𝑅s 𝐴)
7 subrgsubm.1 . . . . 5 𝑀 = (mulGrp‘𝑅)
86, 7mgpress 19246 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑀s 𝐴) = (mulGrp‘(𝑅s 𝐴)))
95, 8mpancom 687 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝑀s 𝐴) = (mulGrp‘(𝑅s 𝐴)))
106subrgring 19534 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (𝑅s 𝐴) ∈ Ring)
11 eqid 2798 . . . . 5 (mulGrp‘(𝑅s 𝐴)) = (mulGrp‘(𝑅s 𝐴))
1211ringmgp 19299 . . . 4 ((𝑅s 𝐴) ∈ Ring → (mulGrp‘(𝑅s 𝐴)) ∈ Mnd)
1310, 12syl 17 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (mulGrp‘(𝑅s 𝐴)) ∈ Mnd)
149, 13eqeltrd 2890 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑀s 𝐴) ∈ Mnd)
157ringmgp 19299 . . 3 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
167, 1mgpbas 19241 . . . 4 (Base‘𝑅) = (Base‘𝑀)
177, 3ringidval 19249 . . . 4 (1r𝑅) = (0g𝑀)
18 eqid 2798 . . . 4 (𝑀s 𝐴) = (𝑀s 𝐴)
1916, 17, 18issubm2 17963 . . 3 (𝑀 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
205, 15, 193syl 18 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
212, 4, 14, 20mpbir3and 1339 1 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ⊆ wss 3881  ‘cfv 6324  (class class class)co 7135  Basecbs 16477   ↾s cress 16478  Mndcmnd 17905  SubMndcsubmnd 17949  mulGrpcmgp 19235  1rcur 19247  Ringcrg 19293  SubRingcsubrg 19527 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-nn 11628  df-2 11690  df-3 11691  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mgp 19236  df-ur 19248  df-ring 19295  df-subrg 19529 This theorem is referenced by:  resrhm  19560  rhmima  19562  zrhpsgnmhm  20277  mplbas2  20714  m2cpmmhm  21357  cmodscexp  23733  plypf1  24816  wilthlem2  25661  wilthlem3  25662  lgsqrlem1  25937  lgseisenlem4  25969  dchrisum0flblem1  26099
 Copyright terms: Public domain W3C validator