Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgsubm | Structured version Visualization version GIF version |
Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
subrgsubm.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
subrgsubm | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | 1 | subrgss 19801 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
3 | eqid 2737 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
4 | 3 | subrg1cl 19808 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ 𝐴) |
5 | subrgrcl 19805 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
6 | eqid 2737 | . . . . 5 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
7 | subrgsubm.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
8 | 6, 7 | mgpress 19515 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑀 ↾s 𝐴) = (mulGrp‘(𝑅 ↾s 𝐴))) |
9 | 5, 8 | mpancom 688 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑀 ↾s 𝐴) = (mulGrp‘(𝑅 ↾s 𝐴))) |
10 | 6 | subrgring 19803 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
11 | eqid 2737 | . . . . 5 ⊢ (mulGrp‘(𝑅 ↾s 𝐴)) = (mulGrp‘(𝑅 ↾s 𝐴)) | |
12 | 11 | ringmgp 19568 | . . . 4 ⊢ ((𝑅 ↾s 𝐴) ∈ Ring → (mulGrp‘(𝑅 ↾s 𝐴)) ∈ Mnd) |
13 | 10, 12 | syl 17 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (mulGrp‘(𝑅 ↾s 𝐴)) ∈ Mnd) |
14 | 9, 13 | eqeltrd 2838 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑀 ↾s 𝐴) ∈ Mnd) |
15 | 7 | ringmgp 19568 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
16 | 7, 1 | mgpbas 19510 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑀) |
17 | 7, 3 | ringidval 19518 | . . . 4 ⊢ (1r‘𝑅) = (0g‘𝑀) |
18 | eqid 2737 | . . . 4 ⊢ (𝑀 ↾s 𝐴) = (𝑀 ↾s 𝐴) | |
19 | 16, 17, 18 | issubm2 18231 | . . 3 ⊢ (𝑀 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
20 | 5, 15, 19 | 3syl 18 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
21 | 2, 4, 14, 20 | mpbir3and 1344 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 ↾s cress 16784 Mndcmnd 18173 SubMndcsubmnd 18217 mulGrpcmgp 19504 1rcur 19516 Ringcrg 19562 SubRingcsubrg 19796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-mgp 19505 df-ur 19517 df-ring 19564 df-subrg 19798 |
This theorem is referenced by: resrhm 19829 rhmima 19831 zrhpsgnmhm 20546 mplbas2 20999 m2cpmmhm 21642 cmodscexp 24018 plypf1 25106 wilthlem2 25951 wilthlem3 25952 lgsqrlem1 26227 lgseisenlem4 26259 dchrisum0flblem1 26389 mhphf 39995 |
Copyright terms: Public domain | W3C validator |