MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubrg Structured version   Visualization version   GIF version

Theorem subsubrg 20514
Description: A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypothesis
Ref Expression
subsubrg.s 𝑆 = (𝑅s 𝐴)
Assertion
Ref Expression
subsubrg (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)))

Proof of Theorem subsubrg
StepHypRef Expression
1 subrgrcl 20492 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
21adantr 480 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝑅 ∈ Ring)
3 eqid 2730 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
43subrgss 20488 . . . . . . . 8 (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ⊆ (Base‘𝑆))
54adantl 481 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵 ⊆ (Base‘𝑆))
6 subsubrg.s . . . . . . . . 9 𝑆 = (𝑅s 𝐴)
76subrgbas 20497 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
87adantr 480 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐴 = (Base‘𝑆))
95, 8sseqtrrd 3987 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵𝐴)
106oveq1i 7400 . . . . . . 7 (𝑆s 𝐵) = ((𝑅s 𝐴) ↾s 𝐵)
11 ressabs 17225 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴) → ((𝑅s 𝐴) ↾s 𝐵) = (𝑅s 𝐵))
1210, 11eqtrid 2777 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴) → (𝑆s 𝐵) = (𝑅s 𝐵))
139, 12syldan 591 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝑆s 𝐵) = (𝑅s 𝐵))
14 eqid 2730 . . . . . . 7 (𝑆s 𝐵) = (𝑆s 𝐵)
1514subrgring 20490 . . . . . 6 (𝐵 ∈ (SubRing‘𝑆) → (𝑆s 𝐵) ∈ Ring)
1615adantl 481 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝑆s 𝐵) ∈ Ring)
1713, 16eqeltrrd 2830 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝑅s 𝐵) ∈ Ring)
18 eqid 2730 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
1918subrgss 20488 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
2019adantr 480 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐴 ⊆ (Base‘𝑅))
219, 20sstrd 3960 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵 ⊆ (Base‘𝑅))
22 eqid 2730 . . . . . . . 8 (1r𝑅) = (1r𝑅)
236, 22subrg1 20498 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑆))
2423adantr 480 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (1r𝑅) = (1r𝑆))
25 eqid 2730 . . . . . . . 8 (1r𝑆) = (1r𝑆)
2625subrg1cl 20496 . . . . . . 7 (𝐵 ∈ (SubRing‘𝑆) → (1r𝑆) ∈ 𝐵)
2726adantl 481 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (1r𝑆) ∈ 𝐵)
2824, 27eqeltrd 2829 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (1r𝑅) ∈ 𝐵)
2921, 28jca 511 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝐵 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐵))
3018, 22issubrg 20487 . . . 4 (𝐵 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐵) ∈ Ring) ∧ (𝐵 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐵)))
312, 17, 29, 30syl21anbrc 1345 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵 ∈ (SubRing‘𝑅))
3231, 9jca 511 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴))
336subrgring 20490 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
3433adantr 480 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝑆 ∈ Ring)
3512adantrl 716 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (𝑆s 𝐵) = (𝑅s 𝐵))
36 eqid 2730 . . . . . 6 (𝑅s 𝐵) = (𝑅s 𝐵)
3736subrgring 20490 . . . . 5 (𝐵 ∈ (SubRing‘𝑅) → (𝑅s 𝐵) ∈ Ring)
3837ad2antrl 728 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (𝑅s 𝐵) ∈ Ring)
3935, 38eqeltrd 2829 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (𝑆s 𝐵) ∈ Ring)
40 simprr 772 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝐵𝐴)
417adantr 480 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝐴 = (Base‘𝑆))
4240, 41sseqtrd 3986 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝐵 ⊆ (Base‘𝑆))
4323adantr 480 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (1r𝑅) = (1r𝑆))
4422subrg1cl 20496 . . . . . 6 (𝐵 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝐵)
4544ad2antrl 728 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (1r𝑅) ∈ 𝐵)
4643, 45eqeltrrd 2830 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (1r𝑆) ∈ 𝐵)
4742, 46jca 511 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (𝐵 ⊆ (Base‘𝑆) ∧ (1r𝑆) ∈ 𝐵))
483, 25issubrg 20487 . . 3 (𝐵 ∈ (SubRing‘𝑆) ↔ ((𝑆 ∈ Ring ∧ (𝑆s 𝐵) ∈ Ring) ∧ (𝐵 ⊆ (Base‘𝑆) ∧ (1r𝑆) ∈ 𝐵)))
4934, 39, 47, 48syl21anbrc 1345 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝐵 ∈ (SubRing‘𝑆))
5032, 49impbida 800 1 (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3917  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  1rcur 20097  Ringcrg 20149  SubRingcsubrg 20485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-subg 19062  df-mgp 20057  df-ur 20098  df-ring 20151  df-subrg 20486
This theorem is referenced by:  subsubrg2  20515  zringunit  21383  rzgrp  21539  subrgmpl  21946  mplbas2  21956  mplind  21984  subsdrg  33255  ressply1evls1  33541  lsssra  33591  fedgmullem1  33632  fedgmullem2  33633  fedgmul  33634  fldexttr  33661  fldextrspunlem1  33677  fldextrspunfld  33678  algextdeglem2  33715  algextdeglem4  33717
  Copyright terms: Public domain W3C validator