MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubrg Structured version   Visualization version   GIF version

Theorem subsubrg 19555
Description: A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypothesis
Ref Expression
subsubrg.s 𝑆 = (𝑅s 𝐴)
Assertion
Ref Expression
subsubrg (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)))

Proof of Theorem subsubrg
StepHypRef Expression
1 subrgrcl 19534 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
21adantr 483 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝑅 ∈ Ring)
3 eqid 2821 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
43subrgss 19530 . . . . . . . 8 (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ⊆ (Base‘𝑆))
54adantl 484 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵 ⊆ (Base‘𝑆))
6 subsubrg.s . . . . . . . . 9 𝑆 = (𝑅s 𝐴)
76subrgbas 19538 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
87adantr 483 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐴 = (Base‘𝑆))
95, 8sseqtrrd 4008 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵𝐴)
106oveq1i 7160 . . . . . . 7 (𝑆s 𝐵) = ((𝑅s 𝐴) ↾s 𝐵)
11 ressabs 16557 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴) → ((𝑅s 𝐴) ↾s 𝐵) = (𝑅s 𝐵))
1210, 11syl5eq 2868 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴) → (𝑆s 𝐵) = (𝑅s 𝐵))
139, 12syldan 593 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝑆s 𝐵) = (𝑅s 𝐵))
14 eqid 2821 . . . . . . 7 (𝑆s 𝐵) = (𝑆s 𝐵)
1514subrgring 19532 . . . . . 6 (𝐵 ∈ (SubRing‘𝑆) → (𝑆s 𝐵) ∈ Ring)
1615adantl 484 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝑆s 𝐵) ∈ Ring)
1713, 16eqeltrrd 2914 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝑅s 𝐵) ∈ Ring)
18 eqid 2821 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
1918subrgss 19530 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
2019adantr 483 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐴 ⊆ (Base‘𝑅))
219, 20sstrd 3977 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵 ⊆ (Base‘𝑅))
22 eqid 2821 . . . . . . . 8 (1r𝑅) = (1r𝑅)
236, 22subrg1 19539 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑆))
2423adantr 483 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (1r𝑅) = (1r𝑆))
25 eqid 2821 . . . . . . . 8 (1r𝑆) = (1r𝑆)
2625subrg1cl 19537 . . . . . . 7 (𝐵 ∈ (SubRing‘𝑆) → (1r𝑆) ∈ 𝐵)
2726adantl 484 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (1r𝑆) ∈ 𝐵)
2824, 27eqeltrd 2913 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (1r𝑅) ∈ 𝐵)
2921, 28jca 514 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝐵 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐵))
3018, 22issubrg 19529 . . . 4 (𝐵 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐵) ∈ Ring) ∧ (𝐵 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐵)))
312, 17, 29, 30syl21anbrc 1340 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵 ∈ (SubRing‘𝑅))
3231, 9jca 514 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴))
336subrgring 19532 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
3433adantr 483 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝑆 ∈ Ring)
3512adantrl 714 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (𝑆s 𝐵) = (𝑅s 𝐵))
36 eqid 2821 . . . . . 6 (𝑅s 𝐵) = (𝑅s 𝐵)
3736subrgring 19532 . . . . 5 (𝐵 ∈ (SubRing‘𝑅) → (𝑅s 𝐵) ∈ Ring)
3837ad2antrl 726 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (𝑅s 𝐵) ∈ Ring)
3935, 38eqeltrd 2913 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (𝑆s 𝐵) ∈ Ring)
40 simprr 771 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝐵𝐴)
417adantr 483 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝐴 = (Base‘𝑆))
4240, 41sseqtrd 4007 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝐵 ⊆ (Base‘𝑆))
4323adantr 483 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (1r𝑅) = (1r𝑆))
4422subrg1cl 19537 . . . . . 6 (𝐵 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝐵)
4544ad2antrl 726 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (1r𝑅) ∈ 𝐵)
4643, 45eqeltrrd 2914 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (1r𝑆) ∈ 𝐵)
4742, 46jca 514 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (𝐵 ⊆ (Base‘𝑆) ∧ (1r𝑆) ∈ 𝐵))
483, 25issubrg 19529 . . 3 (𝐵 ∈ (SubRing‘𝑆) ↔ ((𝑆 ∈ Ring ∧ (𝑆s 𝐵) ∈ Ring) ∧ (𝐵 ⊆ (Base‘𝑆) ∧ (1r𝑆) ∈ 𝐵)))
4934, 39, 47, 48syl21anbrc 1340 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝐵 ∈ (SubRing‘𝑆))
5032, 49impbida 799 1 (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wss 3936  cfv 6350  (class class class)co 7150  Basecbs 16477  s cress 16478  1rcur 19245  Ringcrg 19291  SubRingcsubrg 19525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-subg 18270  df-mgp 19234  df-ur 19246  df-ring 19293  df-subrg 19527
This theorem is referenced by:  subsubrg2  19556  subrgmpl  20235  mplbas2  20245  mplind  20276  zringunit  20629  rzgrp  20761  fedgmullem1  31020  fedgmullem2  31021  fedgmul  31022  fldexttr  31043
  Copyright terms: Public domain W3C validator