| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgascl | Structured version Visualization version GIF version | ||
| Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| Ref | Expression |
|---|---|
| subrgascl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| subrgascl.a | ⊢ 𝐴 = (algSc‘𝑃) |
| subrgascl.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| subrgascl.u | ⊢ 𝑈 = (𝐼 mPoly 𝐻) |
| subrgascl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| subrgascl.r | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
| subrgascl.c | ⊢ 𝐶 = (algSc‘𝑈) |
| Ref | Expression |
|---|---|
| subrgascl | ⊢ (𝜑 → 𝐶 = (𝐴 ↾ 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgascl.c | . . . 4 ⊢ 𝐶 = (algSc‘𝑈) | |
| 2 | eqid 2733 | . . . 4 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
| 3 | eqid 2733 | . . . 4 ⊢ (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) | |
| 4 | 1, 2, 3 | asclfn 21822 | . . 3 ⊢ 𝐶 Fn (Base‘(Scalar‘𝑈)) |
| 5 | subrgascl.r | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
| 6 | subrgascl.h | . . . . . . 7 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 7 | 6 | subrgbas 20500 | . . . . . 6 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻)) |
| 8 | 5, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑇 = (Base‘𝐻)) |
| 9 | subrgascl.u | . . . . . . 7 ⊢ 𝑈 = (𝐼 mPoly 𝐻) | |
| 10 | subrgascl.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 11 | 6 | ovexi 7388 | . . . . . . . 8 ⊢ 𝐻 ∈ V |
| 12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ V) |
| 13 | 9, 10, 12 | mplsca 21953 | . . . . . 6 ⊢ (𝜑 → 𝐻 = (Scalar‘𝑈)) |
| 14 | 13 | fveq2d 6834 | . . . . 5 ⊢ (𝜑 → (Base‘𝐻) = (Base‘(Scalar‘𝑈))) |
| 15 | 8, 14 | eqtrd 2768 | . . . 4 ⊢ (𝜑 → 𝑇 = (Base‘(Scalar‘𝑈))) |
| 16 | 15 | fneq2d 6582 | . . 3 ⊢ (𝜑 → (𝐶 Fn 𝑇 ↔ 𝐶 Fn (Base‘(Scalar‘𝑈)))) |
| 17 | 4, 16 | mpbiri 258 | . 2 ⊢ (𝜑 → 𝐶 Fn 𝑇) |
| 18 | subrgascl.a | . . . . 5 ⊢ 𝐴 = (algSc‘𝑃) | |
| 19 | eqid 2733 | . . . . 5 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
| 20 | eqid 2733 | . . . . 5 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
| 21 | 18, 19, 20 | asclfn 21822 | . . . 4 ⊢ 𝐴 Fn (Base‘(Scalar‘𝑃)) |
| 22 | subrgascl.p | . . . . . . 7 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 23 | subrgrcl 20495 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 24 | 5, 23 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 25 | 22, 10, 24 | mplsca 21953 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
| 26 | 25 | fveq2d 6834 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
| 27 | 26 | fneq2d 6582 | . . . 4 ⊢ (𝜑 → (𝐴 Fn (Base‘𝑅) ↔ 𝐴 Fn (Base‘(Scalar‘𝑃)))) |
| 28 | 21, 27 | mpbiri 258 | . . 3 ⊢ (𝜑 → 𝐴 Fn (Base‘𝑅)) |
| 29 | eqid 2733 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 30 | 29 | subrgss 20491 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅)) |
| 31 | 5, 30 | syl 17 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝑅)) |
| 32 | fnssres 6611 | . . 3 ⊢ ((𝐴 Fn (Base‘𝑅) ∧ 𝑇 ⊆ (Base‘𝑅)) → (𝐴 ↾ 𝑇) Fn 𝑇) | |
| 33 | 28, 31, 32 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ↾ 𝑇) Fn 𝑇) |
| 34 | fvres 6849 | . . . 4 ⊢ (𝑥 ∈ 𝑇 → ((𝐴 ↾ 𝑇)‘𝑥) = (𝐴‘𝑥)) | |
| 35 | 34 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐴 ↾ 𝑇)‘𝑥) = (𝐴‘𝑥)) |
| 36 | eqid 2733 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 37 | 6, 36 | subrg0 20498 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (0g‘𝑅) = (0g‘𝐻)) |
| 38 | 5, 37 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑅) = (0g‘𝐻)) |
| 39 | 38 | ifeq2d 4497 | . . . . . 6 ⊢ (𝜑 → if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅)) = if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝐻))) |
| 40 | 39 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅)) = if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝐻))) |
| 41 | 40 | mpteq2dv 5189 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅))) = (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝐻)))) |
| 42 | eqid 2733 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 43 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝐼 ∈ 𝑊) |
| 44 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑅 ∈ Ring) |
| 45 | 31 | sselda 3930 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ (Base‘𝑅)) |
| 46 | 22, 42, 36, 29, 18, 43, 44, 45 | mplascl 22002 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐴‘𝑥) = (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅)))) |
| 47 | eqid 2733 | . . . . 5 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 48 | eqid 2733 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 49 | 6 | subrgring 20493 | . . . . . . 7 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring) |
| 50 | 5, 49 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ Ring) |
| 51 | 50 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝐻 ∈ Ring) |
| 52 | 8 | eleq2d 2819 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑇 ↔ 𝑥 ∈ (Base‘𝐻))) |
| 53 | 52 | biimpa 476 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ (Base‘𝐻)) |
| 54 | 9, 42, 47, 48, 1, 43, 51, 53 | mplascl 22002 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐶‘𝑥) = (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝐻)))) |
| 55 | 41, 46, 54 | 3eqtr4d 2778 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐴‘𝑥) = (𝐶‘𝑥)) |
| 56 | 35, 55 | eqtr2d 2769 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐶‘𝑥) = ((𝐴 ↾ 𝑇)‘𝑥)) |
| 57 | 17, 33, 56 | eqfnfvd 6975 | 1 ⊢ (𝜑 → 𝐶 = (𝐴 ↾ 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 ⊆ wss 3898 ifcif 4476 {csn 4577 ↦ cmpt 5176 × cxp 5619 ◡ccnv 5620 ↾ cres 5623 “ cima 5624 Fn wfn 6483 ‘cfv 6488 (class class class)co 7354 ↑m cmap 8758 Fincfn 8877 0cc0 11015 ℕcn 12134 ℕ0cn0 12390 Basecbs 17124 ↾s cress 17145 Scalarcsca 17168 0gc0g 17347 Ringcrg 20155 SubRingcsubrg 20488 algSccascl 21793 mPoly cmpl 21847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-ofr 7619 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-pm 8761 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-sup 9335 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-fz 13412 df-fzo 13559 df-seq 13913 df-hash 14242 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-hom 17189 df-cco 17190 df-0g 17349 df-gsum 17350 df-prds 17355 df-pws 17357 df-mre 17492 df-mrc 17493 df-acs 17495 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-mhm 18695 df-submnd 18696 df-grp 18853 df-minusg 18854 df-mulg 18985 df-subg 19040 df-ghm 19129 df-cntz 19233 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-subrng 20465 df-subrg 20489 df-ascl 21796 df-psr 21850 df-mpl 21852 |
| This theorem is referenced by: subrgasclcl 22005 subrg1ascl 22176 |
| Copyright terms: Public domain | W3C validator |