![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrgascl | Structured version Visualization version GIF version |
Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
subrgascl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
subrgascl.a | ⊢ 𝐴 = (algSc‘𝑃) |
subrgascl.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
subrgascl.u | ⊢ 𝑈 = (𝐼 mPoly 𝐻) |
subrgascl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
subrgascl.r | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
subrgascl.c | ⊢ 𝐶 = (algSc‘𝑈) |
Ref | Expression |
---|---|
subrgascl | ⊢ (𝜑 → 𝐶 = (𝐴 ↾ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgascl.c | . . . 4 ⊢ 𝐶 = (algSc‘𝑈) | |
2 | eqid 2736 | . . . 4 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
3 | eqid 2736 | . . . 4 ⊢ (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) | |
4 | 1, 2, 3 | asclfn 21284 | . . 3 ⊢ 𝐶 Fn (Base‘(Scalar‘𝑈)) |
5 | subrgascl.r | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
6 | subrgascl.h | . . . . . . 7 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
7 | 6 | subrgbas 20231 | . . . . . 6 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻)) |
8 | 5, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑇 = (Base‘𝐻)) |
9 | subrgascl.u | . . . . . . 7 ⊢ 𝑈 = (𝐼 mPoly 𝐻) | |
10 | subrgascl.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
11 | 6 | ovexi 7391 | . . . . . . . 8 ⊢ 𝐻 ∈ V |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ V) |
13 | 9, 10, 12 | mplsca 21417 | . . . . . 6 ⊢ (𝜑 → 𝐻 = (Scalar‘𝑈)) |
14 | 13 | fveq2d 6846 | . . . . 5 ⊢ (𝜑 → (Base‘𝐻) = (Base‘(Scalar‘𝑈))) |
15 | 8, 14 | eqtrd 2776 | . . . 4 ⊢ (𝜑 → 𝑇 = (Base‘(Scalar‘𝑈))) |
16 | 15 | fneq2d 6596 | . . 3 ⊢ (𝜑 → (𝐶 Fn 𝑇 ↔ 𝐶 Fn (Base‘(Scalar‘𝑈)))) |
17 | 4, 16 | mpbiri 257 | . 2 ⊢ (𝜑 → 𝐶 Fn 𝑇) |
18 | subrgascl.a | . . . . 5 ⊢ 𝐴 = (algSc‘𝑃) | |
19 | eqid 2736 | . . . . 5 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
20 | eqid 2736 | . . . . 5 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
21 | 18, 19, 20 | asclfn 21284 | . . . 4 ⊢ 𝐴 Fn (Base‘(Scalar‘𝑃)) |
22 | subrgascl.p | . . . . . . 7 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
23 | subrgrcl 20227 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
24 | 5, 23 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) |
25 | 22, 10, 24 | mplsca 21417 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
26 | 25 | fveq2d 6846 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
27 | 26 | fneq2d 6596 | . . . 4 ⊢ (𝜑 → (𝐴 Fn (Base‘𝑅) ↔ 𝐴 Fn (Base‘(Scalar‘𝑃)))) |
28 | 21, 27 | mpbiri 257 | . . 3 ⊢ (𝜑 → 𝐴 Fn (Base‘𝑅)) |
29 | eqid 2736 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
30 | 29 | subrgss 20223 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅)) |
31 | 5, 30 | syl 17 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝑅)) |
32 | fnssres 6624 | . . 3 ⊢ ((𝐴 Fn (Base‘𝑅) ∧ 𝑇 ⊆ (Base‘𝑅)) → (𝐴 ↾ 𝑇) Fn 𝑇) | |
33 | 28, 31, 32 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ↾ 𝑇) Fn 𝑇) |
34 | fvres 6861 | . . . 4 ⊢ (𝑥 ∈ 𝑇 → ((𝐴 ↾ 𝑇)‘𝑥) = (𝐴‘𝑥)) | |
35 | 34 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐴 ↾ 𝑇)‘𝑥) = (𝐴‘𝑥)) |
36 | eqid 2736 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
37 | 6, 36 | subrg0 20229 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (0g‘𝑅) = (0g‘𝐻)) |
38 | 5, 37 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑅) = (0g‘𝐻)) |
39 | 38 | ifeq2d 4506 | . . . . . 6 ⊢ (𝜑 → if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅)) = if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝐻))) |
40 | 39 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅)) = if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝐻))) |
41 | 40 | mpteq2dv 5207 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅))) = (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝐻)))) |
42 | eqid 2736 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
43 | 10 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝐼 ∈ 𝑊) |
44 | 24 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑅 ∈ Ring) |
45 | 31 | sselda 3944 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ (Base‘𝑅)) |
46 | 22, 42, 36, 29, 18, 43, 44, 45 | mplascl 21472 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐴‘𝑥) = (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅)))) |
47 | eqid 2736 | . . . . 5 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
48 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
49 | 6 | subrgring 20225 | . . . . . . 7 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring) |
50 | 5, 49 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ Ring) |
51 | 50 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝐻 ∈ Ring) |
52 | 8 | eleq2d 2823 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑇 ↔ 𝑥 ∈ (Base‘𝐻))) |
53 | 52 | biimpa 477 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ (Base‘𝐻)) |
54 | 9, 42, 47, 48, 1, 43, 51, 53 | mplascl 21472 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐶‘𝑥) = (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝐻)))) |
55 | 41, 46, 54 | 3eqtr4d 2786 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐴‘𝑥) = (𝐶‘𝑥)) |
56 | 35, 55 | eqtr2d 2777 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐶‘𝑥) = ((𝐴 ↾ 𝑇)‘𝑥)) |
57 | 17, 33, 56 | eqfnfvd 6985 | 1 ⊢ (𝜑 → 𝐶 = (𝐴 ↾ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3407 Vcvv 3445 ⊆ wss 3910 ifcif 4486 {csn 4586 ↦ cmpt 5188 × cxp 5631 ◡ccnv 5632 ↾ cres 5635 “ cima 5636 Fn wfn 6491 ‘cfv 6496 (class class class)co 7357 ↑m cmap 8765 Fincfn 8883 0cc0 11051 ℕcn 12153 ℕ0cn0 12413 Basecbs 17083 ↾s cress 17112 Scalarcsca 17136 0gc0g 17321 Ringcrg 19964 SubRingcsubrg 20218 algSccascl 21258 mPoly cmpl 21308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-ofr 7618 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-fz 13425 df-fzo 13568 df-seq 13907 df-hash 14231 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-hom 17157 df-cco 17158 df-0g 17323 df-gsum 17324 df-prds 17329 df-pws 17331 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-submnd 18602 df-grp 18751 df-minusg 18752 df-mulg 18873 df-subg 18925 df-ghm 19006 df-cntz 19097 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-subrg 20220 df-ascl 21261 df-psr 21311 df-mpl 21313 |
This theorem is referenced by: subrgasclcl 21475 subrg1ascl 21630 |
Copyright terms: Public domain | W3C validator |