| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgascl | Structured version Visualization version GIF version | ||
| Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| Ref | Expression |
|---|---|
| subrgascl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| subrgascl.a | ⊢ 𝐴 = (algSc‘𝑃) |
| subrgascl.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| subrgascl.u | ⊢ 𝑈 = (𝐼 mPoly 𝐻) |
| subrgascl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| subrgascl.r | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
| subrgascl.c | ⊢ 𝐶 = (algSc‘𝑈) |
| Ref | Expression |
|---|---|
| subrgascl | ⊢ (𝜑 → 𝐶 = (𝐴 ↾ 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgascl.c | . . . 4 ⊢ 𝐶 = (algSc‘𝑈) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
| 3 | eqid 2729 | . . . 4 ⊢ (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) | |
| 4 | 1, 2, 3 | asclfn 21806 | . . 3 ⊢ 𝐶 Fn (Base‘(Scalar‘𝑈)) |
| 5 | subrgascl.r | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
| 6 | subrgascl.h | . . . . . . 7 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 7 | 6 | subrgbas 20484 | . . . . . 6 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻)) |
| 8 | 5, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑇 = (Base‘𝐻)) |
| 9 | subrgascl.u | . . . . . . 7 ⊢ 𝑈 = (𝐼 mPoly 𝐻) | |
| 10 | subrgascl.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 11 | 6 | ovexi 7387 | . . . . . . . 8 ⊢ 𝐻 ∈ V |
| 12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ V) |
| 13 | 9, 10, 12 | mplsca 21938 | . . . . . 6 ⊢ (𝜑 → 𝐻 = (Scalar‘𝑈)) |
| 14 | 13 | fveq2d 6830 | . . . . 5 ⊢ (𝜑 → (Base‘𝐻) = (Base‘(Scalar‘𝑈))) |
| 15 | 8, 14 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → 𝑇 = (Base‘(Scalar‘𝑈))) |
| 16 | 15 | fneq2d 6580 | . . 3 ⊢ (𝜑 → (𝐶 Fn 𝑇 ↔ 𝐶 Fn (Base‘(Scalar‘𝑈)))) |
| 17 | 4, 16 | mpbiri 258 | . 2 ⊢ (𝜑 → 𝐶 Fn 𝑇) |
| 18 | subrgascl.a | . . . . 5 ⊢ 𝐴 = (algSc‘𝑃) | |
| 19 | eqid 2729 | . . . . 5 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
| 20 | eqid 2729 | . . . . 5 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
| 21 | 18, 19, 20 | asclfn 21806 | . . . 4 ⊢ 𝐴 Fn (Base‘(Scalar‘𝑃)) |
| 22 | subrgascl.p | . . . . . . 7 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 23 | subrgrcl 20479 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 24 | 5, 23 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 25 | 22, 10, 24 | mplsca 21938 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
| 26 | 25 | fveq2d 6830 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
| 27 | 26 | fneq2d 6580 | . . . 4 ⊢ (𝜑 → (𝐴 Fn (Base‘𝑅) ↔ 𝐴 Fn (Base‘(Scalar‘𝑃)))) |
| 28 | 21, 27 | mpbiri 258 | . . 3 ⊢ (𝜑 → 𝐴 Fn (Base‘𝑅)) |
| 29 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 30 | 29 | subrgss 20475 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅)) |
| 31 | 5, 30 | syl 17 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝑅)) |
| 32 | fnssres 6609 | . . 3 ⊢ ((𝐴 Fn (Base‘𝑅) ∧ 𝑇 ⊆ (Base‘𝑅)) → (𝐴 ↾ 𝑇) Fn 𝑇) | |
| 33 | 28, 31, 32 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ↾ 𝑇) Fn 𝑇) |
| 34 | fvres 6845 | . . . 4 ⊢ (𝑥 ∈ 𝑇 → ((𝐴 ↾ 𝑇)‘𝑥) = (𝐴‘𝑥)) | |
| 35 | 34 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐴 ↾ 𝑇)‘𝑥) = (𝐴‘𝑥)) |
| 36 | eqid 2729 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 37 | 6, 36 | subrg0 20482 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (0g‘𝑅) = (0g‘𝐻)) |
| 38 | 5, 37 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑅) = (0g‘𝐻)) |
| 39 | 38 | ifeq2d 4499 | . . . . . 6 ⊢ (𝜑 → if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅)) = if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝐻))) |
| 40 | 39 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅)) = if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝐻))) |
| 41 | 40 | mpteq2dv 5189 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅))) = (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝐻)))) |
| 42 | eqid 2729 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 43 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝐼 ∈ 𝑊) |
| 44 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑅 ∈ Ring) |
| 45 | 31 | sselda 3937 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ (Base‘𝑅)) |
| 46 | 22, 42, 36, 29, 18, 43, 44, 45 | mplascl 21987 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐴‘𝑥) = (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅)))) |
| 47 | eqid 2729 | . . . . 5 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 48 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 49 | 6 | subrgring 20477 | . . . . . . 7 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring) |
| 50 | 5, 49 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ Ring) |
| 51 | 50 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝐻 ∈ Ring) |
| 52 | 8 | eleq2d 2814 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑇 ↔ 𝑥 ∈ (Base‘𝐻))) |
| 53 | 52 | biimpa 476 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ (Base‘𝐻)) |
| 54 | 9, 42, 47, 48, 1, 43, 51, 53 | mplascl 21987 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐶‘𝑥) = (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝐻)))) |
| 55 | 41, 46, 54 | 3eqtr4d 2774 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐴‘𝑥) = (𝐶‘𝑥)) |
| 56 | 35, 55 | eqtr2d 2765 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐶‘𝑥) = ((𝐴 ↾ 𝑇)‘𝑥)) |
| 57 | 17, 33, 56 | eqfnfvd 6972 | 1 ⊢ (𝜑 → 𝐶 = (𝐴 ↾ 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 Vcvv 3438 ⊆ wss 3905 ifcif 4478 {csn 4579 ↦ cmpt 5176 × cxp 5621 ◡ccnv 5622 ↾ cres 5625 “ cima 5626 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 Fincfn 8879 0cc0 11028 ℕcn 12146 ℕ0cn0 12402 Basecbs 17138 ↾s cress 17159 Scalarcsca 17182 0gc0g 17361 Ringcrg 20136 SubRingcsubrg 20472 algSccascl 21777 mPoly cmpl 21831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-mulg 18965 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-subrng 20449 df-subrg 20473 df-ascl 21780 df-psr 21834 df-mpl 21836 |
| This theorem is referenced by: subrgasclcl 21990 subrg1ascl 22161 |
| Copyright terms: Public domain | W3C validator |