MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgascl Structured version   Visualization version   GIF version

Theorem subrgascl 21973
Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
subrgascl.p 𝑃 = (𝐼 mPoly 𝑅)
subrgascl.a 𝐴 = (algSc‘𝑃)
subrgascl.h 𝐻 = (𝑅s 𝑇)
subrgascl.u 𝑈 = (𝐼 mPoly 𝐻)
subrgascl.i (𝜑𝐼𝑊)
subrgascl.r (𝜑𝑇 ∈ (SubRing‘𝑅))
subrgascl.c 𝐶 = (algSc‘𝑈)
Assertion
Ref Expression
subrgascl (𝜑𝐶 = (𝐴𝑇))

Proof of Theorem subrgascl
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgascl.c . . . 4 𝐶 = (algSc‘𝑈)
2 eqid 2729 . . . 4 (Scalar‘𝑈) = (Scalar‘𝑈)
3 eqid 2729 . . . 4 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
41, 2, 3asclfn 21790 . . 3 𝐶 Fn (Base‘(Scalar‘𝑈))
5 subrgascl.r . . . . . 6 (𝜑𝑇 ∈ (SubRing‘𝑅))
6 subrgascl.h . . . . . . 7 𝐻 = (𝑅s 𝑇)
76subrgbas 20490 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
85, 7syl 17 . . . . 5 (𝜑𝑇 = (Base‘𝐻))
9 subrgascl.u . . . . . . 7 𝑈 = (𝐼 mPoly 𝐻)
10 subrgascl.i . . . . . . 7 (𝜑𝐼𝑊)
116ovexi 7421 . . . . . . . 8 𝐻 ∈ V
1211a1i 11 . . . . . . 7 (𝜑𝐻 ∈ V)
139, 10, 12mplsca 21922 . . . . . 6 (𝜑𝐻 = (Scalar‘𝑈))
1413fveq2d 6862 . . . . 5 (𝜑 → (Base‘𝐻) = (Base‘(Scalar‘𝑈)))
158, 14eqtrd 2764 . . . 4 (𝜑𝑇 = (Base‘(Scalar‘𝑈)))
1615fneq2d 6612 . . 3 (𝜑 → (𝐶 Fn 𝑇𝐶 Fn (Base‘(Scalar‘𝑈))))
174, 16mpbiri 258 . 2 (𝜑𝐶 Fn 𝑇)
18 subrgascl.a . . . . 5 𝐴 = (algSc‘𝑃)
19 eqid 2729 . . . . 5 (Scalar‘𝑃) = (Scalar‘𝑃)
20 eqid 2729 . . . . 5 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
2118, 19, 20asclfn 21790 . . . 4 𝐴 Fn (Base‘(Scalar‘𝑃))
22 subrgascl.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑅)
23 subrgrcl 20485 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
245, 23syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
2522, 10, 24mplsca 21922 . . . . . 6 (𝜑𝑅 = (Scalar‘𝑃))
2625fveq2d 6862 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
2726fneq2d 6612 . . . 4 (𝜑 → (𝐴 Fn (Base‘𝑅) ↔ 𝐴 Fn (Base‘(Scalar‘𝑃))))
2821, 27mpbiri 258 . . 3 (𝜑𝐴 Fn (Base‘𝑅))
29 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3029subrgss 20481 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅))
315, 30syl 17 . . 3 (𝜑𝑇 ⊆ (Base‘𝑅))
32 fnssres 6641 . . 3 ((𝐴 Fn (Base‘𝑅) ∧ 𝑇 ⊆ (Base‘𝑅)) → (𝐴𝑇) Fn 𝑇)
3328, 31, 32syl2anc 584 . 2 (𝜑 → (𝐴𝑇) Fn 𝑇)
34 fvres 6877 . . . 4 (𝑥𝑇 → ((𝐴𝑇)‘𝑥) = (𝐴𝑥))
3534adantl 481 . . 3 ((𝜑𝑥𝑇) → ((𝐴𝑇)‘𝑥) = (𝐴𝑥))
36 eqid 2729 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
376, 36subrg0 20488 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → (0g𝑅) = (0g𝐻))
385, 37syl 17 . . . . . . 7 (𝜑 → (0g𝑅) = (0g𝐻))
3938ifeq2d 4509 . . . . . 6 (𝜑 → if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅)) = if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝐻)))
4039adantr 480 . . . . 5 ((𝜑𝑥𝑇) → if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅)) = if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝐻)))
4140mpteq2dv 5201 . . . 4 ((𝜑𝑥𝑇) → (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅))) = (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝐻))))
42 eqid 2729 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
4310adantr 480 . . . . 5 ((𝜑𝑥𝑇) → 𝐼𝑊)
4424adantr 480 . . . . 5 ((𝜑𝑥𝑇) → 𝑅 ∈ Ring)
4531sselda 3946 . . . . 5 ((𝜑𝑥𝑇) → 𝑥 ∈ (Base‘𝑅))
4622, 42, 36, 29, 18, 43, 44, 45mplascl 21971 . . . 4 ((𝜑𝑥𝑇) → (𝐴𝑥) = (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅))))
47 eqid 2729 . . . . 5 (0g𝐻) = (0g𝐻)
48 eqid 2729 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
496subrgring 20483 . . . . . . 7 (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring)
505, 49syl 17 . . . . . 6 (𝜑𝐻 ∈ Ring)
5150adantr 480 . . . . 5 ((𝜑𝑥𝑇) → 𝐻 ∈ Ring)
528eleq2d 2814 . . . . . 6 (𝜑 → (𝑥𝑇𝑥 ∈ (Base‘𝐻)))
5352biimpa 476 . . . . 5 ((𝜑𝑥𝑇) → 𝑥 ∈ (Base‘𝐻))
549, 42, 47, 48, 1, 43, 51, 53mplascl 21971 . . . 4 ((𝜑𝑥𝑇) → (𝐶𝑥) = (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝐻))))
5541, 46, 543eqtr4d 2774 . . 3 ((𝜑𝑥𝑇) → (𝐴𝑥) = (𝐶𝑥))
5635, 55eqtr2d 2765 . 2 ((𝜑𝑥𝑇) → (𝐶𝑥) = ((𝐴𝑇)‘𝑥))
5717, 33, 56eqfnfvd 7006 1 (𝜑𝐶 = (𝐴𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  wss 3914  ifcif 4488  {csn 4589  cmpt 5188   × cxp 5636  ccnv 5637  cres 5640  cima 5641   Fn wfn 6506  cfv 6511  (class class class)co 7387  m cmap 8799  Fincfn 8918  0cc0 11068  cn 12186  0cn0 12442  Basecbs 17179  s cress 17200  Scalarcsca 17223  0gc0g 17402  Ringcrg 20142  SubRingcsubrg 20478  algSccascl 21761   mPoly cmpl 21815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-subrng 20455  df-subrg 20479  df-ascl 21764  df-psr 21818  df-mpl 21820
This theorem is referenced by:  subrgasclcl  21974  subrg1ascl  22145
  Copyright terms: Public domain W3C validator