MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgascl Structured version   Visualization version   GIF version

Theorem subrgascl 22002
Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
subrgascl.p 𝑃 = (𝐼 mPoly 𝑅)
subrgascl.a 𝐴 = (algSc‘𝑃)
subrgascl.h 𝐻 = (𝑅s 𝑇)
subrgascl.u 𝑈 = (𝐼 mPoly 𝐻)
subrgascl.i (𝜑𝐼𝑊)
subrgascl.r (𝜑𝑇 ∈ (SubRing‘𝑅))
subrgascl.c 𝐶 = (algSc‘𝑈)
Assertion
Ref Expression
subrgascl (𝜑𝐶 = (𝐴𝑇))

Proof of Theorem subrgascl
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgascl.c . . . 4 𝐶 = (algSc‘𝑈)
2 eqid 2731 . . . 4 (Scalar‘𝑈) = (Scalar‘𝑈)
3 eqid 2731 . . . 4 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
41, 2, 3asclfn 21819 . . 3 𝐶 Fn (Base‘(Scalar‘𝑈))
5 subrgascl.r . . . . . 6 (𝜑𝑇 ∈ (SubRing‘𝑅))
6 subrgascl.h . . . . . . 7 𝐻 = (𝑅s 𝑇)
76subrgbas 20497 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
85, 7syl 17 . . . . 5 (𝜑𝑇 = (Base‘𝐻))
9 subrgascl.u . . . . . . 7 𝑈 = (𝐼 mPoly 𝐻)
10 subrgascl.i . . . . . . 7 (𝜑𝐼𝑊)
116ovexi 7380 . . . . . . . 8 𝐻 ∈ V
1211a1i 11 . . . . . . 7 (𝜑𝐻 ∈ V)
139, 10, 12mplsca 21951 . . . . . 6 (𝜑𝐻 = (Scalar‘𝑈))
1413fveq2d 6826 . . . . 5 (𝜑 → (Base‘𝐻) = (Base‘(Scalar‘𝑈)))
158, 14eqtrd 2766 . . . 4 (𝜑𝑇 = (Base‘(Scalar‘𝑈)))
1615fneq2d 6575 . . 3 (𝜑 → (𝐶 Fn 𝑇𝐶 Fn (Base‘(Scalar‘𝑈))))
174, 16mpbiri 258 . 2 (𝜑𝐶 Fn 𝑇)
18 subrgascl.a . . . . 5 𝐴 = (algSc‘𝑃)
19 eqid 2731 . . . . 5 (Scalar‘𝑃) = (Scalar‘𝑃)
20 eqid 2731 . . . . 5 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
2118, 19, 20asclfn 21819 . . . 4 𝐴 Fn (Base‘(Scalar‘𝑃))
22 subrgascl.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑅)
23 subrgrcl 20492 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
245, 23syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
2522, 10, 24mplsca 21951 . . . . . 6 (𝜑𝑅 = (Scalar‘𝑃))
2625fveq2d 6826 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
2726fneq2d 6575 . . . 4 (𝜑 → (𝐴 Fn (Base‘𝑅) ↔ 𝐴 Fn (Base‘(Scalar‘𝑃))))
2821, 27mpbiri 258 . . 3 (𝜑𝐴 Fn (Base‘𝑅))
29 eqid 2731 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3029subrgss 20488 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅))
315, 30syl 17 . . 3 (𝜑𝑇 ⊆ (Base‘𝑅))
32 fnssres 6604 . . 3 ((𝐴 Fn (Base‘𝑅) ∧ 𝑇 ⊆ (Base‘𝑅)) → (𝐴𝑇) Fn 𝑇)
3328, 31, 32syl2anc 584 . 2 (𝜑 → (𝐴𝑇) Fn 𝑇)
34 fvres 6841 . . . 4 (𝑥𝑇 → ((𝐴𝑇)‘𝑥) = (𝐴𝑥))
3534adantl 481 . . 3 ((𝜑𝑥𝑇) → ((𝐴𝑇)‘𝑥) = (𝐴𝑥))
36 eqid 2731 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
376, 36subrg0 20495 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → (0g𝑅) = (0g𝐻))
385, 37syl 17 . . . . . . 7 (𝜑 → (0g𝑅) = (0g𝐻))
3938ifeq2d 4496 . . . . . 6 (𝜑 → if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅)) = if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝐻)))
4039adantr 480 . . . . 5 ((𝜑𝑥𝑇) → if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅)) = if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝐻)))
4140mpteq2dv 5185 . . . 4 ((𝜑𝑥𝑇) → (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅))) = (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝐻))))
42 eqid 2731 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
4310adantr 480 . . . . 5 ((𝜑𝑥𝑇) → 𝐼𝑊)
4424adantr 480 . . . . 5 ((𝜑𝑥𝑇) → 𝑅 ∈ Ring)
4531sselda 3934 . . . . 5 ((𝜑𝑥𝑇) → 𝑥 ∈ (Base‘𝑅))
4622, 42, 36, 29, 18, 43, 44, 45mplascl 22000 . . . 4 ((𝜑𝑥𝑇) → (𝐴𝑥) = (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅))))
47 eqid 2731 . . . . 5 (0g𝐻) = (0g𝐻)
48 eqid 2731 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
496subrgring 20490 . . . . . . 7 (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring)
505, 49syl 17 . . . . . 6 (𝜑𝐻 ∈ Ring)
5150adantr 480 . . . . 5 ((𝜑𝑥𝑇) → 𝐻 ∈ Ring)
528eleq2d 2817 . . . . . 6 (𝜑 → (𝑥𝑇𝑥 ∈ (Base‘𝐻)))
5352biimpa 476 . . . . 5 ((𝜑𝑥𝑇) → 𝑥 ∈ (Base‘𝐻))
549, 42, 47, 48, 1, 43, 51, 53mplascl 22000 . . . 4 ((𝜑𝑥𝑇) → (𝐶𝑥) = (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝐻))))
5541, 46, 543eqtr4d 2776 . . 3 ((𝜑𝑥𝑇) → (𝐴𝑥) = (𝐶𝑥))
5635, 55eqtr2d 2767 . 2 ((𝜑𝑥𝑇) → (𝐶𝑥) = ((𝐴𝑇)‘𝑥))
5717, 33, 56eqfnfvd 6967 1 (𝜑𝐶 = (𝐴𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  wss 3902  ifcif 4475  {csn 4576  cmpt 5172   × cxp 5614  ccnv 5615  cres 5618  cima 5619   Fn wfn 6476  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869  0cc0 11006  cn 12125  0cn0 12381  Basecbs 17120  s cress 17141  Scalarcsca 17164  0gc0g 17343  Ringcrg 20152  SubRingcsubrg 20485  algSccascl 21790   mPoly cmpl 21844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-mulg 18981  df-subg 19036  df-ghm 19126  df-cntz 19230  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-subrng 20462  df-subrg 20486  df-ascl 21793  df-psr 21847  df-mpl 21849
This theorem is referenced by:  subrgasclcl  22003  subrg1ascl  22174
  Copyright terms: Public domain W3C validator