Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgascl | Structured version Visualization version GIF version |
Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
subrgascl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
subrgascl.a | ⊢ 𝐴 = (algSc‘𝑃) |
subrgascl.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
subrgascl.u | ⊢ 𝑈 = (𝐼 mPoly 𝐻) |
subrgascl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
subrgascl.r | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
subrgascl.c | ⊢ 𝐶 = (algSc‘𝑈) |
Ref | Expression |
---|---|
subrgascl | ⊢ (𝜑 → 𝐶 = (𝐴 ↾ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgascl.c | . . . 4 ⊢ 𝐶 = (algSc‘𝑈) | |
2 | eqid 2758 | . . . 4 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
3 | eqid 2758 | . . . 4 ⊢ (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) | |
4 | 1, 2, 3 | asclfn 20648 | . . 3 ⊢ 𝐶 Fn (Base‘(Scalar‘𝑈)) |
5 | subrgascl.r | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
6 | subrgascl.h | . . . . . . 7 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
7 | 6 | subrgbas 19617 | . . . . . 6 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻)) |
8 | 5, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑇 = (Base‘𝐻)) |
9 | subrgascl.u | . . . . . . 7 ⊢ 𝑈 = (𝐼 mPoly 𝐻) | |
10 | subrgascl.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
11 | 6 | ovexi 7189 | . . . . . . . 8 ⊢ 𝐻 ∈ V |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ V) |
13 | 9, 10, 12 | mplsca 20781 | . . . . . 6 ⊢ (𝜑 → 𝐻 = (Scalar‘𝑈)) |
14 | 13 | fveq2d 6666 | . . . . 5 ⊢ (𝜑 → (Base‘𝐻) = (Base‘(Scalar‘𝑈))) |
15 | 8, 14 | eqtrd 2793 | . . . 4 ⊢ (𝜑 → 𝑇 = (Base‘(Scalar‘𝑈))) |
16 | 15 | fneq2d 6432 | . . 3 ⊢ (𝜑 → (𝐶 Fn 𝑇 ↔ 𝐶 Fn (Base‘(Scalar‘𝑈)))) |
17 | 4, 16 | mpbiri 261 | . 2 ⊢ (𝜑 → 𝐶 Fn 𝑇) |
18 | subrgascl.a | . . . . 5 ⊢ 𝐴 = (algSc‘𝑃) | |
19 | eqid 2758 | . . . . 5 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
20 | eqid 2758 | . . . . 5 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
21 | 18, 19, 20 | asclfn 20648 | . . . 4 ⊢ 𝐴 Fn (Base‘(Scalar‘𝑃)) |
22 | subrgascl.p | . . . . . . 7 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
23 | subrgrcl 19613 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
24 | 5, 23 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) |
25 | 22, 10, 24 | mplsca 20781 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
26 | 25 | fveq2d 6666 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
27 | 26 | fneq2d 6432 | . . . 4 ⊢ (𝜑 → (𝐴 Fn (Base‘𝑅) ↔ 𝐴 Fn (Base‘(Scalar‘𝑃)))) |
28 | 21, 27 | mpbiri 261 | . . 3 ⊢ (𝜑 → 𝐴 Fn (Base‘𝑅)) |
29 | eqid 2758 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
30 | 29 | subrgss 19609 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅)) |
31 | 5, 30 | syl 17 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝑅)) |
32 | fnssres 6457 | . . 3 ⊢ ((𝐴 Fn (Base‘𝑅) ∧ 𝑇 ⊆ (Base‘𝑅)) → (𝐴 ↾ 𝑇) Fn 𝑇) | |
33 | 28, 31, 32 | syl2anc 587 | . 2 ⊢ (𝜑 → (𝐴 ↾ 𝑇) Fn 𝑇) |
34 | fvres 6681 | . . . 4 ⊢ (𝑥 ∈ 𝑇 → ((𝐴 ↾ 𝑇)‘𝑥) = (𝐴‘𝑥)) | |
35 | 34 | adantl 485 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐴 ↾ 𝑇)‘𝑥) = (𝐴‘𝑥)) |
36 | eqid 2758 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
37 | 6, 36 | subrg0 19615 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (0g‘𝑅) = (0g‘𝐻)) |
38 | 5, 37 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑅) = (0g‘𝐻)) |
39 | 38 | ifeq2d 4443 | . . . . . 6 ⊢ (𝜑 → if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅)) = if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝐻))) |
40 | 39 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅)) = if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝐻))) |
41 | 40 | mpteq2dv 5131 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅))) = (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝐻)))) |
42 | eqid 2758 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
43 | 10 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝐼 ∈ 𝑊) |
44 | 24 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑅 ∈ Ring) |
45 | 31 | sselda 3894 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ (Base‘𝑅)) |
46 | 22, 42, 36, 29, 18, 43, 44, 45 | mplascl 20830 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐴‘𝑥) = (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅)))) |
47 | eqid 2758 | . . . . 5 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
48 | eqid 2758 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
49 | 6 | subrgring 19611 | . . . . . . 7 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring) |
50 | 5, 49 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ Ring) |
51 | 50 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝐻 ∈ Ring) |
52 | 8 | eleq2d 2837 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑇 ↔ 𝑥 ∈ (Base‘𝐻))) |
53 | 52 | biimpa 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ (Base‘𝐻)) |
54 | 9, 42, 47, 48, 1, 43, 51, 53 | mplascl 20830 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐶‘𝑥) = (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝐻)))) |
55 | 41, 46, 54 | 3eqtr4d 2803 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐴‘𝑥) = (𝐶‘𝑥)) |
56 | 35, 55 | eqtr2d 2794 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐶‘𝑥) = ((𝐴 ↾ 𝑇)‘𝑥)) |
57 | 17, 33, 56 | eqfnfvd 6800 | 1 ⊢ (𝜑 → 𝐶 = (𝐴 ↾ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {crab 3074 Vcvv 3409 ⊆ wss 3860 ifcif 4423 {csn 4525 ↦ cmpt 5115 × cxp 5525 ◡ccnv 5526 ↾ cres 5529 “ cima 5530 Fn wfn 6334 ‘cfv 6339 (class class class)co 7155 ↑m cmap 8421 Fincfn 8532 0cc0 10580 ℕcn 11679 ℕ0cn0 11939 Basecbs 16546 ↾s cress 16547 Scalarcsca 16631 0gc0g 16776 Ringcrg 19370 SubRingcsubrg 19604 algSccascl 20622 mPoly cmpl 20673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-se 5487 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-of 7410 df-ofr 7411 df-om 7585 df-1st 7698 df-2nd 7699 df-supp 7841 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-map 8423 df-pm 8424 df-ixp 8485 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-fsupp 8872 df-oi 9012 df-card 9406 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-9 11749 df-n0 11940 df-z 12026 df-uz 12288 df-fz 12945 df-fzo 13088 df-seq 13424 df-hash 13746 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-sets 16553 df-ress 16554 df-plusg 16641 df-mulr 16642 df-sca 16644 df-vsca 16645 df-tset 16647 df-0g 16778 df-gsum 16779 df-mre 16920 df-mrc 16921 df-acs 16923 df-mgm 17923 df-sgrp 17972 df-mnd 17983 df-mhm 18027 df-submnd 18028 df-grp 18177 df-minusg 18178 df-mulg 18297 df-subg 18348 df-ghm 18428 df-cntz 18519 df-cmn 18980 df-abl 18981 df-mgp 19313 df-ur 19325 df-ring 19372 df-subrg 19606 df-ascl 20625 df-psr 20676 df-mpl 20678 |
This theorem is referenced by: subrgasclcl 20833 subrg1ascl 20988 |
Copyright terms: Public domain | W3C validator |