MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgascl Structured version   Visualization version   GIF version

Theorem subrgascl 21184
Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
subrgascl.p 𝑃 = (𝐼 mPoly 𝑅)
subrgascl.a 𝐴 = (algSc‘𝑃)
subrgascl.h 𝐻 = (𝑅s 𝑇)
subrgascl.u 𝑈 = (𝐼 mPoly 𝐻)
subrgascl.i (𝜑𝐼𝑊)
subrgascl.r (𝜑𝑇 ∈ (SubRing‘𝑅))
subrgascl.c 𝐶 = (algSc‘𝑈)
Assertion
Ref Expression
subrgascl (𝜑𝐶 = (𝐴𝑇))

Proof of Theorem subrgascl
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgascl.c . . . 4 𝐶 = (algSc‘𝑈)
2 eqid 2738 . . . 4 (Scalar‘𝑈) = (Scalar‘𝑈)
3 eqid 2738 . . . 4 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
41, 2, 3asclfn 20995 . . 3 𝐶 Fn (Base‘(Scalar‘𝑈))
5 subrgascl.r . . . . . 6 (𝜑𝑇 ∈ (SubRing‘𝑅))
6 subrgascl.h . . . . . . 7 𝐻 = (𝑅s 𝑇)
76subrgbas 19948 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
85, 7syl 17 . . . . 5 (𝜑𝑇 = (Base‘𝐻))
9 subrgascl.u . . . . . . 7 𝑈 = (𝐼 mPoly 𝐻)
10 subrgascl.i . . . . . . 7 (𝜑𝐼𝑊)
116ovexi 7289 . . . . . . . 8 𝐻 ∈ V
1211a1i 11 . . . . . . 7 (𝜑𝐻 ∈ V)
139, 10, 12mplsca 21127 . . . . . 6 (𝜑𝐻 = (Scalar‘𝑈))
1413fveq2d 6760 . . . . 5 (𝜑 → (Base‘𝐻) = (Base‘(Scalar‘𝑈)))
158, 14eqtrd 2778 . . . 4 (𝜑𝑇 = (Base‘(Scalar‘𝑈)))
1615fneq2d 6511 . . 3 (𝜑 → (𝐶 Fn 𝑇𝐶 Fn (Base‘(Scalar‘𝑈))))
174, 16mpbiri 257 . 2 (𝜑𝐶 Fn 𝑇)
18 subrgascl.a . . . . 5 𝐴 = (algSc‘𝑃)
19 eqid 2738 . . . . 5 (Scalar‘𝑃) = (Scalar‘𝑃)
20 eqid 2738 . . . . 5 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
2118, 19, 20asclfn 20995 . . . 4 𝐴 Fn (Base‘(Scalar‘𝑃))
22 subrgascl.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑅)
23 subrgrcl 19944 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
245, 23syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
2522, 10, 24mplsca 21127 . . . . . 6 (𝜑𝑅 = (Scalar‘𝑃))
2625fveq2d 6760 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
2726fneq2d 6511 . . . 4 (𝜑 → (𝐴 Fn (Base‘𝑅) ↔ 𝐴 Fn (Base‘(Scalar‘𝑃))))
2821, 27mpbiri 257 . . 3 (𝜑𝐴 Fn (Base‘𝑅))
29 eqid 2738 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3029subrgss 19940 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅))
315, 30syl 17 . . 3 (𝜑𝑇 ⊆ (Base‘𝑅))
32 fnssres 6539 . . 3 ((𝐴 Fn (Base‘𝑅) ∧ 𝑇 ⊆ (Base‘𝑅)) → (𝐴𝑇) Fn 𝑇)
3328, 31, 32syl2anc 583 . 2 (𝜑 → (𝐴𝑇) Fn 𝑇)
34 fvres 6775 . . . 4 (𝑥𝑇 → ((𝐴𝑇)‘𝑥) = (𝐴𝑥))
3534adantl 481 . . 3 ((𝜑𝑥𝑇) → ((𝐴𝑇)‘𝑥) = (𝐴𝑥))
36 eqid 2738 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
376, 36subrg0 19946 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → (0g𝑅) = (0g𝐻))
385, 37syl 17 . . . . . . 7 (𝜑 → (0g𝑅) = (0g𝐻))
3938ifeq2d 4476 . . . . . 6 (𝜑 → if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅)) = if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝐻)))
4039adantr 480 . . . . 5 ((𝜑𝑥𝑇) → if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅)) = if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝐻)))
4140mpteq2dv 5172 . . . 4 ((𝜑𝑥𝑇) → (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅))) = (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝐻))))
42 eqid 2738 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
4310adantr 480 . . . . 5 ((𝜑𝑥𝑇) → 𝐼𝑊)
4424adantr 480 . . . . 5 ((𝜑𝑥𝑇) → 𝑅 ∈ Ring)
4531sselda 3917 . . . . 5 ((𝜑𝑥𝑇) → 𝑥 ∈ (Base‘𝑅))
4622, 42, 36, 29, 18, 43, 44, 45mplascl 21182 . . . 4 ((𝜑𝑥𝑇) → (𝐴𝑥) = (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅))))
47 eqid 2738 . . . . 5 (0g𝐻) = (0g𝐻)
48 eqid 2738 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
496subrgring 19942 . . . . . . 7 (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring)
505, 49syl 17 . . . . . 6 (𝜑𝐻 ∈ Ring)
5150adantr 480 . . . . 5 ((𝜑𝑥𝑇) → 𝐻 ∈ Ring)
528eleq2d 2824 . . . . . 6 (𝜑 → (𝑥𝑇𝑥 ∈ (Base‘𝐻)))
5352biimpa 476 . . . . 5 ((𝜑𝑥𝑇) → 𝑥 ∈ (Base‘𝐻))
549, 42, 47, 48, 1, 43, 51, 53mplascl 21182 . . . 4 ((𝜑𝑥𝑇) → (𝐶𝑥) = (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝐻))))
5541, 46, 543eqtr4d 2788 . . 3 ((𝜑𝑥𝑇) → (𝐴𝑥) = (𝐶𝑥))
5635, 55eqtr2d 2779 . 2 ((𝜑𝑥𝑇) → (𝐶𝑥) = ((𝐴𝑇)‘𝑥))
5717, 33, 56eqfnfvd 6894 1 (𝜑𝐶 = (𝐴𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  wss 3883  ifcif 4456  {csn 4558  cmpt 5153   × cxp 5578  ccnv 5579  cres 5582  cima 5583   Fn wfn 6413  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691  0cc0 10802  cn 11903  0cn0 12163  Basecbs 16840  s cress 16867  Scalarcsca 16891  0gc0g 17067  Ringcrg 19698  SubRingcsubrg 19935  algSccascl 20969   mPoly cmpl 21019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-ascl 20972  df-psr 21022  df-mpl 21024
This theorem is referenced by:  subrgasclcl  21185  subrg1ascl  21340
  Copyright terms: Public domain W3C validator