MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgascl Structured version   Visualization version   GIF version

Theorem subrgascl 22091
Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
subrgascl.p 𝑃 = (𝐼 mPoly 𝑅)
subrgascl.a 𝐴 = (algSc‘𝑃)
subrgascl.h 𝐻 = (𝑅s 𝑇)
subrgascl.u 𝑈 = (𝐼 mPoly 𝐻)
subrgascl.i (𝜑𝐼𝑊)
subrgascl.r (𝜑𝑇 ∈ (SubRing‘𝑅))
subrgascl.c 𝐶 = (algSc‘𝑈)
Assertion
Ref Expression
subrgascl (𝜑𝐶 = (𝐴𝑇))

Proof of Theorem subrgascl
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgascl.c . . . 4 𝐶 = (algSc‘𝑈)
2 eqid 2736 . . . 4 (Scalar‘𝑈) = (Scalar‘𝑈)
3 eqid 2736 . . . 4 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
41, 2, 3asclfn 21902 . . 3 𝐶 Fn (Base‘(Scalar‘𝑈))
5 subrgascl.r . . . . . 6 (𝜑𝑇 ∈ (SubRing‘𝑅))
6 subrgascl.h . . . . . . 7 𝐻 = (𝑅s 𝑇)
76subrgbas 20582 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
85, 7syl 17 . . . . 5 (𝜑𝑇 = (Base‘𝐻))
9 subrgascl.u . . . . . . 7 𝑈 = (𝐼 mPoly 𝐻)
10 subrgascl.i . . . . . . 7 (𝜑𝐼𝑊)
116ovexi 7466 . . . . . . . 8 𝐻 ∈ V
1211a1i 11 . . . . . . 7 (𝜑𝐻 ∈ V)
139, 10, 12mplsca 22034 . . . . . 6 (𝜑𝐻 = (Scalar‘𝑈))
1413fveq2d 6909 . . . . 5 (𝜑 → (Base‘𝐻) = (Base‘(Scalar‘𝑈)))
158, 14eqtrd 2776 . . . 4 (𝜑𝑇 = (Base‘(Scalar‘𝑈)))
1615fneq2d 6661 . . 3 (𝜑 → (𝐶 Fn 𝑇𝐶 Fn (Base‘(Scalar‘𝑈))))
174, 16mpbiri 258 . 2 (𝜑𝐶 Fn 𝑇)
18 subrgascl.a . . . . 5 𝐴 = (algSc‘𝑃)
19 eqid 2736 . . . . 5 (Scalar‘𝑃) = (Scalar‘𝑃)
20 eqid 2736 . . . . 5 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
2118, 19, 20asclfn 21902 . . . 4 𝐴 Fn (Base‘(Scalar‘𝑃))
22 subrgascl.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑅)
23 subrgrcl 20577 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
245, 23syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
2522, 10, 24mplsca 22034 . . . . . 6 (𝜑𝑅 = (Scalar‘𝑃))
2625fveq2d 6909 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
2726fneq2d 6661 . . . 4 (𝜑 → (𝐴 Fn (Base‘𝑅) ↔ 𝐴 Fn (Base‘(Scalar‘𝑃))))
2821, 27mpbiri 258 . . 3 (𝜑𝐴 Fn (Base‘𝑅))
29 eqid 2736 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3029subrgss 20573 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅))
315, 30syl 17 . . 3 (𝜑𝑇 ⊆ (Base‘𝑅))
32 fnssres 6690 . . 3 ((𝐴 Fn (Base‘𝑅) ∧ 𝑇 ⊆ (Base‘𝑅)) → (𝐴𝑇) Fn 𝑇)
3328, 31, 32syl2anc 584 . 2 (𝜑 → (𝐴𝑇) Fn 𝑇)
34 fvres 6924 . . . 4 (𝑥𝑇 → ((𝐴𝑇)‘𝑥) = (𝐴𝑥))
3534adantl 481 . . 3 ((𝜑𝑥𝑇) → ((𝐴𝑇)‘𝑥) = (𝐴𝑥))
36 eqid 2736 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
376, 36subrg0 20580 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → (0g𝑅) = (0g𝐻))
385, 37syl 17 . . . . . . 7 (𝜑 → (0g𝑅) = (0g𝐻))
3938ifeq2d 4545 . . . . . 6 (𝜑 → if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅)) = if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝐻)))
4039adantr 480 . . . . 5 ((𝜑𝑥𝑇) → if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅)) = if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝐻)))
4140mpteq2dv 5243 . . . 4 ((𝜑𝑥𝑇) → (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅))) = (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝐻))))
42 eqid 2736 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
4310adantr 480 . . . . 5 ((𝜑𝑥𝑇) → 𝐼𝑊)
4424adantr 480 . . . . 5 ((𝜑𝑥𝑇) → 𝑅 ∈ Ring)
4531sselda 3982 . . . . 5 ((𝜑𝑥𝑇) → 𝑥 ∈ (Base‘𝑅))
4622, 42, 36, 29, 18, 43, 44, 45mplascl 22089 . . . 4 ((𝜑𝑥𝑇) → (𝐴𝑥) = (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅))))
47 eqid 2736 . . . . 5 (0g𝐻) = (0g𝐻)
48 eqid 2736 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
496subrgring 20575 . . . . . . 7 (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring)
505, 49syl 17 . . . . . 6 (𝜑𝐻 ∈ Ring)
5150adantr 480 . . . . 5 ((𝜑𝑥𝑇) → 𝐻 ∈ Ring)
528eleq2d 2826 . . . . . 6 (𝜑 → (𝑥𝑇𝑥 ∈ (Base‘𝐻)))
5352biimpa 476 . . . . 5 ((𝜑𝑥𝑇) → 𝑥 ∈ (Base‘𝐻))
549, 42, 47, 48, 1, 43, 51, 53mplascl 22089 . . . 4 ((𝜑𝑥𝑇) → (𝐶𝑥) = (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝐻))))
5541, 46, 543eqtr4d 2786 . . 3 ((𝜑𝑥𝑇) → (𝐴𝑥) = (𝐶𝑥))
5635, 55eqtr2d 2777 . 2 ((𝜑𝑥𝑇) → (𝐶𝑥) = ((𝐴𝑇)‘𝑥))
5717, 33, 56eqfnfvd 7053 1 (𝜑𝐶 = (𝐴𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {crab 3435  Vcvv 3479  wss 3950  ifcif 4524  {csn 4625  cmpt 5224   × cxp 5682  ccnv 5683  cres 5686  cima 5687   Fn wfn 6555  cfv 6560  (class class class)co 7432  m cmap 8867  Fincfn 8986  0cc0 11156  cn 12267  0cn0 12528  Basecbs 17248  s cress 17275  Scalarcsca 17301  0gc0g 17485  Ringcrg 20231  SubRingcsubrg 20570  algSccascl 21873   mPoly cmpl 21927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-subrng 20547  df-subrg 20571  df-ascl 21876  df-psr 21930  df-mpl 21932
This theorem is referenced by:  subrgasclcl  22092  subrg1ascl  22263
  Copyright terms: Public domain W3C validator