MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgascl Structured version   Visualization version   GIF version

Theorem subrgascl 21470
Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
subrgascl.p 𝑃 = (𝐼 mPoly 𝑅)
subrgascl.a 𝐴 = (algSc‘𝑃)
subrgascl.h 𝐻 = (𝑅s 𝑇)
subrgascl.u 𝑈 = (𝐼 mPoly 𝐻)
subrgascl.i (𝜑𝐼𝑊)
subrgascl.r (𝜑𝑇 ∈ (SubRing‘𝑅))
subrgascl.c 𝐶 = (algSc‘𝑈)
Assertion
Ref Expression
subrgascl (𝜑𝐶 = (𝐴𝑇))

Proof of Theorem subrgascl
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgascl.c . . . 4 𝐶 = (algSc‘𝑈)
2 eqid 2736 . . . 4 (Scalar‘𝑈) = (Scalar‘𝑈)
3 eqid 2736 . . . 4 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
41, 2, 3asclfn 21280 . . 3 𝐶 Fn (Base‘(Scalar‘𝑈))
5 subrgascl.r . . . . . 6 (𝜑𝑇 ∈ (SubRing‘𝑅))
6 subrgascl.h . . . . . . 7 𝐻 = (𝑅s 𝑇)
76subrgbas 20227 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
85, 7syl 17 . . . . 5 (𝜑𝑇 = (Base‘𝐻))
9 subrgascl.u . . . . . . 7 𝑈 = (𝐼 mPoly 𝐻)
10 subrgascl.i . . . . . . 7 (𝜑𝐼𝑊)
116ovexi 7388 . . . . . . . 8 𝐻 ∈ V
1211a1i 11 . . . . . . 7 (𝜑𝐻 ∈ V)
139, 10, 12mplsca 21413 . . . . . 6 (𝜑𝐻 = (Scalar‘𝑈))
1413fveq2d 6844 . . . . 5 (𝜑 → (Base‘𝐻) = (Base‘(Scalar‘𝑈)))
158, 14eqtrd 2776 . . . 4 (𝜑𝑇 = (Base‘(Scalar‘𝑈)))
1615fneq2d 6594 . . 3 (𝜑 → (𝐶 Fn 𝑇𝐶 Fn (Base‘(Scalar‘𝑈))))
174, 16mpbiri 257 . 2 (𝜑𝐶 Fn 𝑇)
18 subrgascl.a . . . . 5 𝐴 = (algSc‘𝑃)
19 eqid 2736 . . . . 5 (Scalar‘𝑃) = (Scalar‘𝑃)
20 eqid 2736 . . . . 5 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
2118, 19, 20asclfn 21280 . . . 4 𝐴 Fn (Base‘(Scalar‘𝑃))
22 subrgascl.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑅)
23 subrgrcl 20223 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
245, 23syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
2522, 10, 24mplsca 21413 . . . . . 6 (𝜑𝑅 = (Scalar‘𝑃))
2625fveq2d 6844 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
2726fneq2d 6594 . . . 4 (𝜑 → (𝐴 Fn (Base‘𝑅) ↔ 𝐴 Fn (Base‘(Scalar‘𝑃))))
2821, 27mpbiri 257 . . 3 (𝜑𝐴 Fn (Base‘𝑅))
29 eqid 2736 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3029subrgss 20219 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅))
315, 30syl 17 . . 3 (𝜑𝑇 ⊆ (Base‘𝑅))
32 fnssres 6622 . . 3 ((𝐴 Fn (Base‘𝑅) ∧ 𝑇 ⊆ (Base‘𝑅)) → (𝐴𝑇) Fn 𝑇)
3328, 31, 32syl2anc 584 . 2 (𝜑 → (𝐴𝑇) Fn 𝑇)
34 fvres 6859 . . . 4 (𝑥𝑇 → ((𝐴𝑇)‘𝑥) = (𝐴𝑥))
3534adantl 482 . . 3 ((𝜑𝑥𝑇) → ((𝐴𝑇)‘𝑥) = (𝐴𝑥))
36 eqid 2736 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
376, 36subrg0 20225 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → (0g𝑅) = (0g𝐻))
385, 37syl 17 . . . . . . 7 (𝜑 → (0g𝑅) = (0g𝐻))
3938ifeq2d 4505 . . . . . 6 (𝜑 → if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅)) = if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝐻)))
4039adantr 481 . . . . 5 ((𝜑𝑥𝑇) → if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅)) = if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝐻)))
4140mpteq2dv 5206 . . . 4 ((𝜑𝑥𝑇) → (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅))) = (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝐻))))
42 eqid 2736 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
4310adantr 481 . . . . 5 ((𝜑𝑥𝑇) → 𝐼𝑊)
4424adantr 481 . . . . 5 ((𝜑𝑥𝑇) → 𝑅 ∈ Ring)
4531sselda 3943 . . . . 5 ((𝜑𝑥𝑇) → 𝑥 ∈ (Base‘𝑅))
4622, 42, 36, 29, 18, 43, 44, 45mplascl 21468 . . . 4 ((𝜑𝑥𝑇) → (𝐴𝑥) = (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝑅))))
47 eqid 2736 . . . . 5 (0g𝐻) = (0g𝐻)
48 eqid 2736 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
496subrgring 20221 . . . . . . 7 (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring)
505, 49syl 17 . . . . . 6 (𝜑𝐻 ∈ Ring)
5150adantr 481 . . . . 5 ((𝜑𝑥𝑇) → 𝐻 ∈ Ring)
528eleq2d 2823 . . . . . 6 (𝜑 → (𝑥𝑇𝑥 ∈ (Base‘𝐻)))
5352biimpa 477 . . . . 5 ((𝜑𝑥𝑇) → 𝑥 ∈ (Base‘𝐻))
549, 42, 47, 48, 1, 43, 51, 53mplascl 21468 . . . 4 ((𝜑𝑥𝑇) → (𝐶𝑥) = (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g𝐻))))
5541, 46, 543eqtr4d 2786 . . 3 ((𝜑𝑥𝑇) → (𝐴𝑥) = (𝐶𝑥))
5635, 55eqtr2d 2777 . 2 ((𝜑𝑥𝑇) → (𝐶𝑥) = ((𝐴𝑇)‘𝑥))
5717, 33, 56eqfnfvd 6983 1 (𝜑𝐶 = (𝐴𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {crab 3406  Vcvv 3444  wss 3909  ifcif 4485  {csn 4585  cmpt 5187   × cxp 5630  ccnv 5631  cres 5634  cima 5635   Fn wfn 6489  cfv 6494  (class class class)co 7354  m cmap 8762  Fincfn 8880  0cc0 11048  cn 12150  0cn0 12410  Basecbs 17080  s cress 17109  Scalarcsca 17133  0gc0g 17318  Ringcrg 19960  SubRingcsubrg 20214  algSccascl 21254   mPoly cmpl 21304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7669  ax-cnex 11104  ax-resscn 11105  ax-1cn 11106  ax-icn 11107  ax-addcl 11108  ax-addrcl 11109  ax-mulcl 11110  ax-mulrcl 11111  ax-mulcom 11112  ax-addass 11113  ax-mulass 11114  ax-distr 11115  ax-i2m1 11116  ax-1ne0 11117  ax-1rid 11118  ax-rnegex 11119  ax-rrecex 11120  ax-cnre 11121  ax-pre-lttri 11122  ax-pre-lttrn 11123  ax-pre-ltadd 11124  ax-pre-mulgt0 11125
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-iin 4956  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-se 5588  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-isom 6503  df-riota 7310  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7614  df-ofr 7615  df-om 7800  df-1st 7918  df-2nd 7919  df-supp 8090  df-frecs 8209  df-wrecs 8240  df-recs 8314  df-rdg 8353  df-1o 8409  df-er 8645  df-map 8764  df-pm 8765  df-ixp 8833  df-en 8881  df-dom 8882  df-sdom 8883  df-fin 8884  df-fsupp 9303  df-sup 9375  df-oi 9443  df-card 9872  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11384  df-neg 11385  df-nn 12151  df-2 12213  df-3 12214  df-4 12215  df-5 12216  df-6 12217  df-7 12218  df-8 12219  df-9 12220  df-n0 12411  df-z 12497  df-dec 12616  df-uz 12761  df-fz 13422  df-fzo 13565  df-seq 13904  df-hash 14228  df-struct 17016  df-sets 17033  df-slot 17051  df-ndx 17063  df-base 17081  df-ress 17110  df-plusg 17143  df-mulr 17144  df-sca 17146  df-vsca 17147  df-ip 17148  df-tset 17149  df-ple 17150  df-ds 17152  df-hom 17154  df-cco 17155  df-0g 17320  df-gsum 17321  df-prds 17326  df-pws 17328  df-mre 17463  df-mrc 17464  df-acs 17466  df-mgm 18494  df-sgrp 18543  df-mnd 18554  df-mhm 18598  df-submnd 18599  df-grp 18748  df-minusg 18749  df-mulg 18869  df-subg 18921  df-ghm 19002  df-cntz 19093  df-cmn 19560  df-abl 19561  df-mgp 19893  df-ur 19910  df-ring 19962  df-subrg 20216  df-ascl 21257  df-psr 21307  df-mpl 21309
This theorem is referenced by:  subrgasclcl  21471  subrg1ascl  21626
  Copyright terms: Public domain W3C validator