![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrgascl | Structured version Visualization version GIF version |
Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
subrgascl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
subrgascl.a | ⊢ 𝐴 = (algSc‘𝑃) |
subrgascl.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
subrgascl.u | ⊢ 𝑈 = (𝐼 mPoly 𝐻) |
subrgascl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
subrgascl.r | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
subrgascl.c | ⊢ 𝐶 = (algSc‘𝑈) |
Ref | Expression |
---|---|
subrgascl | ⊢ (𝜑 → 𝐶 = (𝐴 ↾ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgascl.c | . . . 4 ⊢ 𝐶 = (algSc‘𝑈) | |
2 | eqid 2740 | . . . 4 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
3 | eqid 2740 | . . . 4 ⊢ (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) | |
4 | 1, 2, 3 | asclfn 21924 | . . 3 ⊢ 𝐶 Fn (Base‘(Scalar‘𝑈)) |
5 | subrgascl.r | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
6 | subrgascl.h | . . . . . . 7 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
7 | 6 | subrgbas 20609 | . . . . . 6 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻)) |
8 | 5, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑇 = (Base‘𝐻)) |
9 | subrgascl.u | . . . . . . 7 ⊢ 𝑈 = (𝐼 mPoly 𝐻) | |
10 | subrgascl.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
11 | 6 | ovexi 7482 | . . . . . . . 8 ⊢ 𝐻 ∈ V |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ V) |
13 | 9, 10, 12 | mplsca 22056 | . . . . . 6 ⊢ (𝜑 → 𝐻 = (Scalar‘𝑈)) |
14 | 13 | fveq2d 6924 | . . . . 5 ⊢ (𝜑 → (Base‘𝐻) = (Base‘(Scalar‘𝑈))) |
15 | 8, 14 | eqtrd 2780 | . . . 4 ⊢ (𝜑 → 𝑇 = (Base‘(Scalar‘𝑈))) |
16 | 15 | fneq2d 6673 | . . 3 ⊢ (𝜑 → (𝐶 Fn 𝑇 ↔ 𝐶 Fn (Base‘(Scalar‘𝑈)))) |
17 | 4, 16 | mpbiri 258 | . 2 ⊢ (𝜑 → 𝐶 Fn 𝑇) |
18 | subrgascl.a | . . . . 5 ⊢ 𝐴 = (algSc‘𝑃) | |
19 | eqid 2740 | . . . . 5 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
20 | eqid 2740 | . . . . 5 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
21 | 18, 19, 20 | asclfn 21924 | . . . 4 ⊢ 𝐴 Fn (Base‘(Scalar‘𝑃)) |
22 | subrgascl.p | . . . . . . 7 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
23 | subrgrcl 20604 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
24 | 5, 23 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) |
25 | 22, 10, 24 | mplsca 22056 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
26 | 25 | fveq2d 6924 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
27 | 26 | fneq2d 6673 | . . . 4 ⊢ (𝜑 → (𝐴 Fn (Base‘𝑅) ↔ 𝐴 Fn (Base‘(Scalar‘𝑃)))) |
28 | 21, 27 | mpbiri 258 | . . 3 ⊢ (𝜑 → 𝐴 Fn (Base‘𝑅)) |
29 | eqid 2740 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
30 | 29 | subrgss 20600 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅)) |
31 | 5, 30 | syl 17 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝑅)) |
32 | fnssres 6703 | . . 3 ⊢ ((𝐴 Fn (Base‘𝑅) ∧ 𝑇 ⊆ (Base‘𝑅)) → (𝐴 ↾ 𝑇) Fn 𝑇) | |
33 | 28, 31, 32 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐴 ↾ 𝑇) Fn 𝑇) |
34 | fvres 6939 | . . . 4 ⊢ (𝑥 ∈ 𝑇 → ((𝐴 ↾ 𝑇)‘𝑥) = (𝐴‘𝑥)) | |
35 | 34 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐴 ↾ 𝑇)‘𝑥) = (𝐴‘𝑥)) |
36 | eqid 2740 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
37 | 6, 36 | subrg0 20607 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (0g‘𝑅) = (0g‘𝐻)) |
38 | 5, 37 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑅) = (0g‘𝐻)) |
39 | 38 | ifeq2d 4568 | . . . . . 6 ⊢ (𝜑 → if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅)) = if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝐻))) |
40 | 39 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅)) = if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝐻))) |
41 | 40 | mpteq2dv 5268 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅))) = (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝐻)))) |
42 | eqid 2740 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
43 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝐼 ∈ 𝑊) |
44 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑅 ∈ Ring) |
45 | 31 | sselda 4008 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ (Base‘𝑅)) |
46 | 22, 42, 36, 29, 18, 43, 44, 45 | mplascl 22111 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐴‘𝑥) = (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝑅)))) |
47 | eqid 2740 | . . . . 5 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
48 | eqid 2740 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
49 | 6 | subrgring 20602 | . . . . . . 7 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring) |
50 | 5, 49 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ Ring) |
51 | 50 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝐻 ∈ Ring) |
52 | 8 | eleq2d 2830 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑇 ↔ 𝑥 ∈ (Base‘𝐻))) |
53 | 52 | biimpa 476 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ (Base‘𝐻)) |
54 | 9, 42, 47, 48, 1, 43, 51, 53 | mplascl 22111 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐶‘𝑥) = (𝑦 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝑥, (0g‘𝐻)))) |
55 | 41, 46, 54 | 3eqtr4d 2790 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐴‘𝑥) = (𝐶‘𝑥)) |
56 | 35, 55 | eqtr2d 2781 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐶‘𝑥) = ((𝐴 ↾ 𝑇)‘𝑥)) |
57 | 17, 33, 56 | eqfnfvd 7067 | 1 ⊢ (𝜑 → 𝐶 = (𝐴 ↾ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ⊆ wss 3976 ifcif 4548 {csn 4648 ↦ cmpt 5249 × cxp 5698 ◡ccnv 5699 ↾ cres 5702 “ cima 5703 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 Fincfn 9003 0cc0 11184 ℕcn 12293 ℕ0cn0 12553 Basecbs 17258 ↾s cress 17287 Scalarcsca 17314 0gc0g 17499 Ringcrg 20260 SubRingcsubrg 20595 algSccascl 21895 mPoly cmpl 21949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-mulg 19108 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-subrng 20572 df-subrg 20597 df-ascl 21898 df-psr 21952 df-mpl 21954 |
This theorem is referenced by: subrgasclcl 22114 subrg1ascl 22283 |
Copyright terms: Public domain | W3C validator |