MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgunit Structured version   Visualization version   GIF version

Theorem subrgunit 20499
Description: An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgugrp.1 𝑆 = (𝑅s 𝐴)
subrgugrp.2 𝑈 = (Unit‘𝑅)
subrgugrp.3 𝑉 = (Unit‘𝑆)
subrgunit.4 𝐼 = (invr𝑅)
Assertion
Ref Expression
subrgunit (𝐴 ∈ (SubRing‘𝑅) → (𝑋𝑉 ↔ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)))

Proof of Theorem subrgunit
StepHypRef Expression
1 subrgugrp.1 . . . . 5 𝑆 = (𝑅s 𝐴)
2 subrgugrp.2 . . . . 5 𝑈 = (Unit‘𝑅)
3 subrgugrp.3 . . . . 5 𝑉 = (Unit‘𝑆)
41, 2, 3subrguss 20496 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)
54sselda 3946 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝑋𝑈)
6 eqid 2729 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
76, 3unitcl 20284 . . . . 5 (𝑋𝑉𝑋 ∈ (Base‘𝑆))
87adantl 481 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝑋 ∈ (Base‘𝑆))
91subrgbas 20490 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
109adantr 480 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝐴 = (Base‘𝑆))
118, 10eleqtrrd 2831 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝑋𝐴)
121subrgring 20483 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
13 eqid 2729 . . . . . 6 (invr𝑆) = (invr𝑆)
143, 13, 6ringinvcl 20301 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑋𝑉) → ((invr𝑆)‘𝑋) ∈ (Base‘𝑆))
1512, 14sylan 580 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → ((invr𝑆)‘𝑋) ∈ (Base‘𝑆))
16 subrgunit.4 . . . . 5 𝐼 = (invr𝑅)
171, 16, 3, 13subrginv 20497 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → (𝐼𝑋) = ((invr𝑆)‘𝑋))
1815, 17, 103eltr4d 2843 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → (𝐼𝑋) ∈ 𝐴)
195, 11, 183jca 1128 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴))
20 simpr2 1196 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋𝐴)
219adantr 480 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝐴 = (Base‘𝑆))
2220, 21eleqtrd 2830 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋 ∈ (Base‘𝑆))
23 simpr3 1197 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝐼𝑋) ∈ 𝐴)
2423, 21eleqtrd 2830 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝐼𝑋) ∈ (Base‘𝑆))
25 eqid 2729 . . . . . 6 (∥r𝑆) = (∥r𝑆)
26 eqid 2729 . . . . . 6 (.r𝑆) = (.r𝑆)
276, 25, 26dvdsrmul 20273 . . . . 5 ((𝑋 ∈ (Base‘𝑆) ∧ (𝐼𝑋) ∈ (Base‘𝑆)) → 𝑋(∥r𝑆)((𝐼𝑋)(.r𝑆)𝑋))
2822, 24, 27syl2anc 584 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋(∥r𝑆)((𝐼𝑋)(.r𝑆)𝑋))
29 subrgrcl 20485 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
3029adantr 480 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑅 ∈ Ring)
31 simpr1 1195 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋𝑈)
32 eqid 2729 . . . . . . 7 (.r𝑅) = (.r𝑅)
33 eqid 2729 . . . . . . 7 (1r𝑅) = (1r𝑅)
342, 16, 32, 33unitlinv 20302 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → ((𝐼𝑋)(.r𝑅)𝑋) = (1r𝑅))
3530, 31, 34syl2anc 584 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r𝑅)𝑋) = (1r𝑅))
361, 32ressmulr 17270 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
3736adantr 480 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (.r𝑅) = (.r𝑆))
3837oveqd 7404 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r𝑅)𝑋) = ((𝐼𝑋)(.r𝑆)𝑋))
391, 33subrg1 20491 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑆))
4039adantr 480 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (1r𝑅) = (1r𝑆))
4135, 38, 403eqtr3d 2772 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r𝑆)𝑋) = (1r𝑆))
4228, 41breqtrd 5133 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋(∥r𝑆)(1r𝑆))
43 eqid 2729 . . . . . . 7 (oppr𝑆) = (oppr𝑆)
4443, 6opprbas 20252 . . . . . 6 (Base‘𝑆) = (Base‘(oppr𝑆))
45 eqid 2729 . . . . . 6 (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆))
46 eqid 2729 . . . . . 6 (.r‘(oppr𝑆)) = (.r‘(oppr𝑆))
4744, 45, 46dvdsrmul 20273 . . . . 5 ((𝑋 ∈ (Base‘𝑆) ∧ (𝐼𝑋) ∈ (Base‘𝑆)) → 𝑋(∥r‘(oppr𝑆))((𝐼𝑋)(.r‘(oppr𝑆))𝑋))
4822, 24, 47syl2anc 584 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋(∥r‘(oppr𝑆))((𝐼𝑋)(.r‘(oppr𝑆))𝑋))
496, 26, 43, 46opprmul 20249 . . . . 5 ((𝐼𝑋)(.r‘(oppr𝑆))𝑋) = (𝑋(.r𝑆)(𝐼𝑋))
502, 16, 32, 33unitrinv 20303 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
5130, 31, 50syl2anc 584 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
5237oveqd 7404 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝑋(.r𝑅)(𝐼𝑋)) = (𝑋(.r𝑆)(𝐼𝑋)))
5351, 52, 403eqtr3d 2772 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝑋(.r𝑆)(𝐼𝑋)) = (1r𝑆))
5449, 53eqtrid 2776 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r‘(oppr𝑆))𝑋) = (1r𝑆))
5548, 54breqtrd 5133 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋(∥r‘(oppr𝑆))(1r𝑆))
56 eqid 2729 . . . 4 (1r𝑆) = (1r𝑆)
573, 56, 25, 43, 45isunit 20282 . . 3 (𝑋𝑉 ↔ (𝑋(∥r𝑆)(1r𝑆) ∧ 𝑋(∥r‘(oppr𝑆))(1r𝑆)))
5842, 55, 57sylanbrc 583 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋𝑉)
5919, 58impbida 800 1 (𝐴 ∈ (SubRing‘𝑅) → (𝑋𝑉 ↔ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  .rcmulr 17221  1rcur 20090  Ringcrg 20142  opprcoppr 20245  rcdsr 20263  Unitcui 20264  invrcinvr 20296  SubRingcsubrg 20478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-subrg 20479
This theorem is referenced by:  issubdrg  20689  gzrngunit  21350  zringunit  21376  cphreccllem  25078
  Copyright terms: Public domain W3C validator