Step | Hyp | Ref
| Expression |
1 | | subrgugrp.1 |
. . . . 5
β’ π = (π
βΎs π΄) |
2 | | subrgugrp.2 |
. . . . 5
β’ π = (Unitβπ
) |
3 | | subrgugrp.3 |
. . . . 5
β’ π = (Unitβπ) |
4 | 1, 2, 3 | subrguss 20478 |
. . . 4
β’ (π΄ β (SubRingβπ
) β π β π) |
5 | 4 | sselda 3982 |
. . 3
β’ ((π΄ β (SubRingβπ
) β§ π β π) β π β π) |
6 | | eqid 2731 |
. . . . . 6
β’
(Baseβπ) =
(Baseβπ) |
7 | 6, 3 | unitcl 20267 |
. . . . 5
β’ (π β π β π β (Baseβπ)) |
8 | 7 | adantl 481 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ π β π) β π β (Baseβπ)) |
9 | 1 | subrgbas 20472 |
. . . . 5
β’ (π΄ β (SubRingβπ
) β π΄ = (Baseβπ)) |
10 | 9 | adantr 480 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ π β π) β π΄ = (Baseβπ)) |
11 | 8, 10 | eleqtrrd 2835 |
. . 3
β’ ((π΄ β (SubRingβπ
) β§ π β π) β π β π΄) |
12 | 1 | subrgring 20465 |
. . . . 5
β’ (π΄ β (SubRingβπ
) β π β Ring) |
13 | | eqid 2731 |
. . . . . 6
β’
(invrβπ) = (invrβπ) |
14 | 3, 13, 6 | ringinvcl 20284 |
. . . . 5
β’ ((π β Ring β§ π β π) β ((invrβπ)βπ) β (Baseβπ)) |
15 | 12, 14 | sylan 579 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ π β π) β ((invrβπ)βπ) β (Baseβπ)) |
16 | | subrgunit.4 |
. . . . 5
β’ πΌ = (invrβπ
) |
17 | 1, 16, 3, 13 | subrginv 20479 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ π β π) β (πΌβπ) = ((invrβπ)βπ)) |
18 | 15, 17, 10 | 3eltr4d 2847 |
. . 3
β’ ((π΄ β (SubRingβπ
) β§ π β π) β (πΌβπ) β π΄) |
19 | 5, 11, 18 | 3jca 1127 |
. 2
β’ ((π΄ β (SubRingβπ
) β§ π β π) β (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) |
20 | | simpr2 1194 |
. . . . . 6
β’ ((π΄ β (SubRingβπ
) β§ (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) β π β π΄) |
21 | 9 | adantr 480 |
. . . . . 6
β’ ((π΄ β (SubRingβπ
) β§ (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) β π΄ = (Baseβπ)) |
22 | 20, 21 | eleqtrd 2834 |
. . . . 5
β’ ((π΄ β (SubRingβπ
) β§ (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) β π β (Baseβπ)) |
23 | | simpr3 1195 |
. . . . . 6
β’ ((π΄ β (SubRingβπ
) β§ (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) β (πΌβπ) β π΄) |
24 | 23, 21 | eleqtrd 2834 |
. . . . 5
β’ ((π΄ β (SubRingβπ
) β§ (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) β (πΌβπ) β (Baseβπ)) |
25 | | eqid 2731 |
. . . . . 6
β’
(β₯rβπ) = (β₯rβπ) |
26 | | eqid 2731 |
. . . . . 6
β’
(.rβπ) = (.rβπ) |
27 | 6, 25, 26 | dvdsrmul 20256 |
. . . . 5
β’ ((π β (Baseβπ) β§ (πΌβπ) β (Baseβπ)) β π(β₯rβπ)((πΌβπ)(.rβπ)π)) |
28 | 22, 24, 27 | syl2anc 583 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) β π(β₯rβπ)((πΌβπ)(.rβπ)π)) |
29 | | subrgrcl 20467 |
. . . . . . 7
β’ (π΄ β (SubRingβπ
) β π
β Ring) |
30 | 29 | adantr 480 |
. . . . . 6
β’ ((π΄ β (SubRingβπ
) β§ (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) β π
β Ring) |
31 | | simpr1 1193 |
. . . . . 6
β’ ((π΄ β (SubRingβπ
) β§ (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) β π β π) |
32 | | eqid 2731 |
. . . . . . 7
β’
(.rβπ
) = (.rβπ
) |
33 | | eqid 2731 |
. . . . . . 7
β’
(1rβπ
) = (1rβπ
) |
34 | 2, 16, 32, 33 | unitlinv 20285 |
. . . . . 6
β’ ((π
β Ring β§ π β π) β ((πΌβπ)(.rβπ
)π) = (1rβπ
)) |
35 | 30, 31, 34 | syl2anc 583 |
. . . . 5
β’ ((π΄ β (SubRingβπ
) β§ (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) β ((πΌβπ)(.rβπ
)π) = (1rβπ
)) |
36 | 1, 32 | ressmulr 17257 |
. . . . . . 7
β’ (π΄ β (SubRingβπ
) β
(.rβπ
) =
(.rβπ)) |
37 | 36 | adantr 480 |
. . . . . 6
β’ ((π΄ β (SubRingβπ
) β§ (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) β (.rβπ
) = (.rβπ)) |
38 | 37 | oveqd 7429 |
. . . . 5
β’ ((π΄ β (SubRingβπ
) β§ (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) β ((πΌβπ)(.rβπ
)π) = ((πΌβπ)(.rβπ)π)) |
39 | 1, 33 | subrg1 20473 |
. . . . . 6
β’ (π΄ β (SubRingβπ
) β
(1rβπ
) =
(1rβπ)) |
40 | 39 | adantr 480 |
. . . . 5
β’ ((π΄ β (SubRingβπ
) β§ (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) β (1rβπ
) = (1rβπ)) |
41 | 35, 38, 40 | 3eqtr3d 2779 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) β ((πΌβπ)(.rβπ)π) = (1rβπ)) |
42 | 28, 41 | breqtrd 5174 |
. . 3
β’ ((π΄ β (SubRingβπ
) β§ (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) β π(β₯rβπ)(1rβπ)) |
43 | | eqid 2731 |
. . . . . . 7
β’
(opprβπ) = (opprβπ) |
44 | 43, 6 | opprbas 20233 |
. . . . . 6
β’
(Baseβπ) =
(Baseβ(opprβπ)) |
45 | | eqid 2731 |
. . . . . 6
β’
(β₯rβ(opprβπ)) =
(β₯rβ(opprβπ)) |
46 | | eqid 2731 |
. . . . . 6
β’
(.rβ(opprβπ)) =
(.rβ(opprβπ)) |
47 | 44, 45, 46 | dvdsrmul 20256 |
. . . . 5
β’ ((π β (Baseβπ) β§ (πΌβπ) β (Baseβπ)) β π(β₯rβ(opprβπ))((πΌβπ)(.rβ(opprβπ))π)) |
48 | 22, 24, 47 | syl2anc 583 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) β π(β₯rβ(opprβπ))((πΌβπ)(.rβ(opprβπ))π)) |
49 | 6, 26, 43, 46 | opprmul 20229 |
. . . . 5
β’ ((πΌβπ)(.rβ(opprβπ))π) = (π(.rβπ)(πΌβπ)) |
50 | 2, 16, 32, 33 | unitrinv 20286 |
. . . . . . 7
β’ ((π
β Ring β§ π β π) β (π(.rβπ
)(πΌβπ)) = (1rβπ
)) |
51 | 30, 31, 50 | syl2anc 583 |
. . . . . 6
β’ ((π΄ β (SubRingβπ
) β§ (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) β (π(.rβπ
)(πΌβπ)) = (1rβπ
)) |
52 | 37 | oveqd 7429 |
. . . . . 6
β’ ((π΄ β (SubRingβπ
) β§ (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) β (π(.rβπ
)(πΌβπ)) = (π(.rβπ)(πΌβπ))) |
53 | 51, 52, 40 | 3eqtr3d 2779 |
. . . . 5
β’ ((π΄ β (SubRingβπ
) β§ (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) β (π(.rβπ)(πΌβπ)) = (1rβπ)) |
54 | 49, 53 | eqtrid 2783 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) β ((πΌβπ)(.rβ(opprβπ))π) = (1rβπ)) |
55 | 48, 54 | breqtrd 5174 |
. . 3
β’ ((π΄ β (SubRingβπ
) β§ (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) β π(β₯rβ(opprβπ))(1rβπ)) |
56 | | eqid 2731 |
. . . 4
β’
(1rβπ) = (1rβπ) |
57 | 3, 56, 25, 43, 45 | isunit 20265 |
. . 3
β’ (π β π β (π(β₯rβπ)(1rβπ) β§ π(β₯rβ(opprβπ))(1rβπ))) |
58 | 42, 55, 57 | sylanbrc 582 |
. 2
β’ ((π΄ β (SubRingβπ
) β§ (π β π β§ π β π΄ β§ (πΌβπ) β π΄)) β π β π) |
59 | 19, 58 | impbida 798 |
1
β’ (π΄ β (SubRingβπ
) β (π β π β (π β π β§ π β π΄ β§ (πΌβπ) β π΄))) |