Proof of Theorem subrgunit
| Step | Hyp | Ref
| Expression |
| 1 | | subrgugrp.1 |
. . . . 5
⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| 2 | | subrgugrp.2 |
. . . . 5
⊢ 𝑈 = (Unit‘𝑅) |
| 3 | | subrgugrp.3 |
. . . . 5
⊢ 𝑉 = (Unit‘𝑆) |
| 4 | 1, 2, 3 | subrguss 20587 |
. . . 4
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ 𝑈) |
| 5 | 4 | sselda 3983 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑈) |
| 6 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 7 | 6, 3 | unitcl 20375 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ (Base‘𝑆)) |
| 8 | 7 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (Base‘𝑆)) |
| 9 | 1 | subrgbas 20581 |
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
| 10 | 9 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑉) → 𝐴 = (Base‘𝑆)) |
| 11 | 8, 10 | eleqtrrd 2844 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝐴) |
| 12 | 1 | subrgring 20574 |
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| 13 | | eqid 2737 |
. . . . . 6
⊢
(invr‘𝑆) = (invr‘𝑆) |
| 14 | 3, 13, 6 | ringinvcl 20392 |
. . . . 5
⊢ ((𝑆 ∈ Ring ∧ 𝑋 ∈ 𝑉) → ((invr‘𝑆)‘𝑋) ∈ (Base‘𝑆)) |
| 15 | 12, 14 | sylan 580 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑉) → ((invr‘𝑆)‘𝑋) ∈ (Base‘𝑆)) |
| 16 | | subrgunit.4 |
. . . . 5
⊢ 𝐼 = (invr‘𝑅) |
| 17 | 1, 16, 3, 13 | subrginv 20588 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑉) → (𝐼‘𝑋) = ((invr‘𝑆)‘𝑋)) |
| 18 | 15, 17, 10 | 3eltr4d 2856 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑉) → (𝐼‘𝑋) ∈ 𝐴) |
| 19 | 5, 11, 18 | 3jca 1129 |
. 2
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑉) → (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) |
| 20 | | simpr2 1196 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → 𝑋 ∈ 𝐴) |
| 21 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → 𝐴 = (Base‘𝑆)) |
| 22 | 20, 21 | eleqtrd 2843 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → 𝑋 ∈ (Base‘𝑆)) |
| 23 | | simpr3 1197 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → (𝐼‘𝑋) ∈ 𝐴) |
| 24 | 23, 21 | eleqtrd 2843 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → (𝐼‘𝑋) ∈ (Base‘𝑆)) |
| 25 | | eqid 2737 |
. . . . . 6
⊢
(∥r‘𝑆) = (∥r‘𝑆) |
| 26 | | eqid 2737 |
. . . . . 6
⊢
(.r‘𝑆) = (.r‘𝑆) |
| 27 | 6, 25, 26 | dvdsrmul 20364 |
. . . . 5
⊢ ((𝑋 ∈ (Base‘𝑆) ∧ (𝐼‘𝑋) ∈ (Base‘𝑆)) → 𝑋(∥r‘𝑆)((𝐼‘𝑋)(.r‘𝑆)𝑋)) |
| 28 | 22, 24, 27 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → 𝑋(∥r‘𝑆)((𝐼‘𝑋)(.r‘𝑆)𝑋)) |
| 29 | | subrgrcl 20576 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) |
| 30 | 29 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → 𝑅 ∈ Ring) |
| 31 | | simpr1 1195 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → 𝑋 ∈ 𝑈) |
| 32 | | eqid 2737 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 33 | | eqid 2737 |
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 34 | 2, 16, 32, 33 | unitlinv 20393 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝐼‘𝑋)(.r‘𝑅)𝑋) = (1r‘𝑅)) |
| 35 | 30, 31, 34 | syl2anc 584 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → ((𝐼‘𝑋)(.r‘𝑅)𝑋) = (1r‘𝑅)) |
| 36 | 1, 32 | ressmulr 17351 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(.r‘𝑅) =
(.r‘𝑆)) |
| 37 | 36 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → (.r‘𝑅) = (.r‘𝑆)) |
| 38 | 37 | oveqd 7448 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → ((𝐼‘𝑋)(.r‘𝑅)𝑋) = ((𝐼‘𝑋)(.r‘𝑆)𝑋)) |
| 39 | 1, 33 | subrg1 20582 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(1r‘𝑅) =
(1r‘𝑆)) |
| 40 | 39 | adantr 480 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → (1r‘𝑅) = (1r‘𝑆)) |
| 41 | 35, 38, 40 | 3eqtr3d 2785 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → ((𝐼‘𝑋)(.r‘𝑆)𝑋) = (1r‘𝑆)) |
| 42 | 28, 41 | breqtrd 5169 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → 𝑋(∥r‘𝑆)(1r‘𝑆)) |
| 43 | | eqid 2737 |
. . . . . . 7
⊢
(oppr‘𝑆) = (oppr‘𝑆) |
| 44 | 43, 6 | opprbas 20341 |
. . . . . 6
⊢
(Base‘𝑆) =
(Base‘(oppr‘𝑆)) |
| 45 | | eqid 2737 |
. . . . . 6
⊢
(∥r‘(oppr‘𝑆)) =
(∥r‘(oppr‘𝑆)) |
| 46 | | eqid 2737 |
. . . . . 6
⊢
(.r‘(oppr‘𝑆)) =
(.r‘(oppr‘𝑆)) |
| 47 | 44, 45, 46 | dvdsrmul 20364 |
. . . . 5
⊢ ((𝑋 ∈ (Base‘𝑆) ∧ (𝐼‘𝑋) ∈ (Base‘𝑆)) → 𝑋(∥r‘(oppr‘𝑆))((𝐼‘𝑋)(.r‘(oppr‘𝑆))𝑋)) |
| 48 | 22, 24, 47 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → 𝑋(∥r‘(oppr‘𝑆))((𝐼‘𝑋)(.r‘(oppr‘𝑆))𝑋)) |
| 49 | 6, 26, 43, 46 | opprmul 20337 |
. . . . 5
⊢ ((𝐼‘𝑋)(.r‘(oppr‘𝑆))𝑋) = (𝑋(.r‘𝑆)(𝐼‘𝑋)) |
| 50 | 2, 16, 32, 33 | unitrinv 20394 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋(.r‘𝑅)(𝐼‘𝑋)) = (1r‘𝑅)) |
| 51 | 30, 31, 50 | syl2anc 584 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → (𝑋(.r‘𝑅)(𝐼‘𝑋)) = (1r‘𝑅)) |
| 52 | 37 | oveqd 7448 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → (𝑋(.r‘𝑅)(𝐼‘𝑋)) = (𝑋(.r‘𝑆)(𝐼‘𝑋))) |
| 53 | 51, 52, 40 | 3eqtr3d 2785 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → (𝑋(.r‘𝑆)(𝐼‘𝑋)) = (1r‘𝑆)) |
| 54 | 49, 53 | eqtrid 2789 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → ((𝐼‘𝑋)(.r‘(oppr‘𝑆))𝑋) = (1r‘𝑆)) |
| 55 | 48, 54 | breqtrd 5169 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → 𝑋(∥r‘(oppr‘𝑆))(1r‘𝑆)) |
| 56 | | eqid 2737 |
. . . 4
⊢
(1r‘𝑆) = (1r‘𝑆) |
| 57 | 3, 56, 25, 43, 45 | isunit 20373 |
. . 3
⊢ (𝑋 ∈ 𝑉 ↔ (𝑋(∥r‘𝑆)(1r‘𝑆) ∧ 𝑋(∥r‘(oppr‘𝑆))(1r‘𝑆))) |
| 58 | 42, 55, 57 | sylanbrc 583 |
. 2
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → 𝑋 ∈ 𝑉) |
| 59 | 19, 58 | impbida 801 |
1
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴))) |