MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgunit Structured version   Visualization version   GIF version

Theorem subrgunit 20481
Description: An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgugrp.1 𝑆 = (𝑅 β†Ύs 𝐴)
subrgugrp.2 π‘ˆ = (Unitβ€˜π‘…)
subrgugrp.3 𝑉 = (Unitβ€˜π‘†)
subrgunit.4 𝐼 = (invrβ€˜π‘…)
Assertion
Ref Expression
subrgunit (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)))

Proof of Theorem subrgunit
StepHypRef Expression
1 subrgugrp.1 . . . . 5 𝑆 = (𝑅 β†Ύs 𝐴)
2 subrgugrp.2 . . . . 5 π‘ˆ = (Unitβ€˜π‘…)
3 subrgugrp.3 . . . . 5 𝑉 = (Unitβ€˜π‘†)
41, 2, 3subrguss 20478 . . . 4 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝑉 βŠ† π‘ˆ)
54sselda 3982 . . 3 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ 𝑋 ∈ 𝑉) β†’ 𝑋 ∈ π‘ˆ)
6 eqid 2731 . . . . . 6 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
76, 3unitcl 20267 . . . . 5 (𝑋 ∈ 𝑉 β†’ 𝑋 ∈ (Baseβ€˜π‘†))
87adantl 481 . . . 4 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ 𝑋 ∈ 𝑉) β†’ 𝑋 ∈ (Baseβ€˜π‘†))
91subrgbas 20472 . . . . 5 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 = (Baseβ€˜π‘†))
109adantr 480 . . . 4 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ 𝑋 ∈ 𝑉) β†’ 𝐴 = (Baseβ€˜π‘†))
118, 10eleqtrrd 2835 . . 3 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ 𝑋 ∈ 𝑉) β†’ 𝑋 ∈ 𝐴)
121subrgring 20465 . . . . 5 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝑆 ∈ Ring)
13 eqid 2731 . . . . . 6 (invrβ€˜π‘†) = (invrβ€˜π‘†)
143, 13, 6ringinvcl 20284 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑋 ∈ 𝑉) β†’ ((invrβ€˜π‘†)β€˜π‘‹) ∈ (Baseβ€˜π‘†))
1512, 14sylan 579 . . . 4 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ 𝑋 ∈ 𝑉) β†’ ((invrβ€˜π‘†)β€˜π‘‹) ∈ (Baseβ€˜π‘†))
16 subrgunit.4 . . . . 5 𝐼 = (invrβ€˜π‘…)
171, 16, 3, 13subrginv 20479 . . . 4 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ 𝑋 ∈ 𝑉) β†’ (πΌβ€˜π‘‹) = ((invrβ€˜π‘†)β€˜π‘‹))
1815, 17, 103eltr4d 2847 . . 3 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ 𝑋 ∈ 𝑉) β†’ (πΌβ€˜π‘‹) ∈ 𝐴)
195, 11, 183jca 1127 . 2 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ 𝑋 ∈ 𝑉) β†’ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴))
20 simpr2 1194 . . . . . 6 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)) β†’ 𝑋 ∈ 𝐴)
219adantr 480 . . . . . 6 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)) β†’ 𝐴 = (Baseβ€˜π‘†))
2220, 21eleqtrd 2834 . . . . 5 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)) β†’ 𝑋 ∈ (Baseβ€˜π‘†))
23 simpr3 1195 . . . . . 6 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)) β†’ (πΌβ€˜π‘‹) ∈ 𝐴)
2423, 21eleqtrd 2834 . . . . 5 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)) β†’ (πΌβ€˜π‘‹) ∈ (Baseβ€˜π‘†))
25 eqid 2731 . . . . . 6 (βˆ₯rβ€˜π‘†) = (βˆ₯rβ€˜π‘†)
26 eqid 2731 . . . . . 6 (.rβ€˜π‘†) = (.rβ€˜π‘†)
276, 25, 26dvdsrmul 20256 . . . . 5 ((𝑋 ∈ (Baseβ€˜π‘†) ∧ (πΌβ€˜π‘‹) ∈ (Baseβ€˜π‘†)) β†’ 𝑋(βˆ₯rβ€˜π‘†)((πΌβ€˜π‘‹)(.rβ€˜π‘†)𝑋))
2822, 24, 27syl2anc 583 . . . 4 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)) β†’ 𝑋(βˆ₯rβ€˜π‘†)((πΌβ€˜π‘‹)(.rβ€˜π‘†)𝑋))
29 subrgrcl 20467 . . . . . . 7 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝑅 ∈ Ring)
3029adantr 480 . . . . . 6 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)) β†’ 𝑅 ∈ Ring)
31 simpr1 1193 . . . . . 6 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)) β†’ 𝑋 ∈ π‘ˆ)
32 eqid 2731 . . . . . . 7 (.rβ€˜π‘…) = (.rβ€˜π‘…)
33 eqid 2731 . . . . . . 7 (1rβ€˜π‘…) = (1rβ€˜π‘…)
342, 16, 32, 33unitlinv 20285 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋 ∈ π‘ˆ) β†’ ((πΌβ€˜π‘‹)(.rβ€˜π‘…)𝑋) = (1rβ€˜π‘…))
3530, 31, 34syl2anc 583 . . . . 5 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)) β†’ ((πΌβ€˜π‘‹)(.rβ€˜π‘…)𝑋) = (1rβ€˜π‘…))
361, 32ressmulr 17257 . . . . . . 7 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (.rβ€˜π‘…) = (.rβ€˜π‘†))
3736adantr 480 . . . . . 6 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)) β†’ (.rβ€˜π‘…) = (.rβ€˜π‘†))
3837oveqd 7429 . . . . 5 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)) β†’ ((πΌβ€˜π‘‹)(.rβ€˜π‘…)𝑋) = ((πΌβ€˜π‘‹)(.rβ€˜π‘†)𝑋))
391, 33subrg1 20473 . . . . . 6 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (1rβ€˜π‘…) = (1rβ€˜π‘†))
4039adantr 480 . . . . 5 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)) β†’ (1rβ€˜π‘…) = (1rβ€˜π‘†))
4135, 38, 403eqtr3d 2779 . . . 4 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)) β†’ ((πΌβ€˜π‘‹)(.rβ€˜π‘†)𝑋) = (1rβ€˜π‘†))
4228, 41breqtrd 5174 . . 3 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)) β†’ 𝑋(βˆ₯rβ€˜π‘†)(1rβ€˜π‘†))
43 eqid 2731 . . . . . . 7 (opprβ€˜π‘†) = (opprβ€˜π‘†)
4443, 6opprbas 20233 . . . . . 6 (Baseβ€˜π‘†) = (Baseβ€˜(opprβ€˜π‘†))
45 eqid 2731 . . . . . 6 (βˆ₯rβ€˜(opprβ€˜π‘†)) = (βˆ₯rβ€˜(opprβ€˜π‘†))
46 eqid 2731 . . . . . 6 (.rβ€˜(opprβ€˜π‘†)) = (.rβ€˜(opprβ€˜π‘†))
4744, 45, 46dvdsrmul 20256 . . . . 5 ((𝑋 ∈ (Baseβ€˜π‘†) ∧ (πΌβ€˜π‘‹) ∈ (Baseβ€˜π‘†)) β†’ 𝑋(βˆ₯rβ€˜(opprβ€˜π‘†))((πΌβ€˜π‘‹)(.rβ€˜(opprβ€˜π‘†))𝑋))
4822, 24, 47syl2anc 583 . . . 4 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)) β†’ 𝑋(βˆ₯rβ€˜(opprβ€˜π‘†))((πΌβ€˜π‘‹)(.rβ€˜(opprβ€˜π‘†))𝑋))
496, 26, 43, 46opprmul 20229 . . . . 5 ((πΌβ€˜π‘‹)(.rβ€˜(opprβ€˜π‘†))𝑋) = (𝑋(.rβ€˜π‘†)(πΌβ€˜π‘‹))
502, 16, 32, 33unitrinv 20286 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋 ∈ π‘ˆ) β†’ (𝑋(.rβ€˜π‘…)(πΌβ€˜π‘‹)) = (1rβ€˜π‘…))
5130, 31, 50syl2anc 583 . . . . . 6 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)) β†’ (𝑋(.rβ€˜π‘…)(πΌβ€˜π‘‹)) = (1rβ€˜π‘…))
5237oveqd 7429 . . . . . 6 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)) β†’ (𝑋(.rβ€˜π‘…)(πΌβ€˜π‘‹)) = (𝑋(.rβ€˜π‘†)(πΌβ€˜π‘‹)))
5351, 52, 403eqtr3d 2779 . . . . 5 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)) β†’ (𝑋(.rβ€˜π‘†)(πΌβ€˜π‘‹)) = (1rβ€˜π‘†))
5449, 53eqtrid 2783 . . . 4 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)) β†’ ((πΌβ€˜π‘‹)(.rβ€˜(opprβ€˜π‘†))𝑋) = (1rβ€˜π‘†))
5548, 54breqtrd 5174 . . 3 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)) β†’ 𝑋(βˆ₯rβ€˜(opprβ€˜π‘†))(1rβ€˜π‘†))
56 eqid 2731 . . . 4 (1rβ€˜π‘†) = (1rβ€˜π‘†)
573, 56, 25, 43, 45isunit 20265 . . 3 (𝑋 ∈ 𝑉 ↔ (𝑋(βˆ₯rβ€˜π‘†)(1rβ€˜π‘†) ∧ 𝑋(βˆ₯rβ€˜(opprβ€˜π‘†))(1rβ€˜π‘†)))
5842, 55, 57sylanbrc 582 . 2 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)) β†’ 𝑋 ∈ 𝑉)
5919, 58impbida 798 1 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7412  Basecbs 17149   β†Ύs cress 17178  .rcmulr 17203  1rcur 20076  Ringcrg 20128  opprcoppr 20225  βˆ₯rcdsr 20246  Unitcui 20247  invrcinvr 20279  SubRingcsubrg 20458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-tpos 8215  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-0g 17392  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-grp 18859  df-minusg 18860  df-subg 19040  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-oppr 20226  df-dvdsr 20249  df-unit 20250  df-invr 20280  df-subrg 20460
This theorem is referenced by:  issubdrg  20545  gzrngunit  21212  zringunit  21238  cphreccllem  24927
  Copyright terms: Public domain W3C validator