Proof of Theorem subrgunit
Step | Hyp | Ref
| Expression |
1 | | subrgugrp.1 |
. . . . 5
⊢ 𝑆 = (𝑅 ↾s 𝐴) |
2 | | subrgugrp.2 |
. . . . 5
⊢ 𝑈 = (Unit‘𝑅) |
3 | | subrgugrp.3 |
. . . . 5
⊢ 𝑉 = (Unit‘𝑆) |
4 | 1, 2, 3 | subrguss 19954 |
. . . 4
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ 𝑈) |
5 | 4 | sselda 3917 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑈) |
6 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑆) =
(Base‘𝑆) |
7 | 6, 3 | unitcl 19816 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ (Base‘𝑆)) |
8 | 7 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (Base‘𝑆)) |
9 | 1 | subrgbas 19948 |
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
10 | 9 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑉) → 𝐴 = (Base‘𝑆)) |
11 | 8, 10 | eleqtrrd 2842 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝐴) |
12 | 1 | subrgring 19942 |
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
13 | | eqid 2738 |
. . . . . 6
⊢
(invr‘𝑆) = (invr‘𝑆) |
14 | 3, 13, 6 | ringinvcl 19833 |
. . . . 5
⊢ ((𝑆 ∈ Ring ∧ 𝑋 ∈ 𝑉) → ((invr‘𝑆)‘𝑋) ∈ (Base‘𝑆)) |
15 | 12, 14 | sylan 579 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑉) → ((invr‘𝑆)‘𝑋) ∈ (Base‘𝑆)) |
16 | | subrgunit.4 |
. . . . 5
⊢ 𝐼 = (invr‘𝑅) |
17 | 1, 16, 3, 13 | subrginv 19955 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑉) → (𝐼‘𝑋) = ((invr‘𝑆)‘𝑋)) |
18 | 15, 17, 10 | 3eltr4d 2854 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑉) → (𝐼‘𝑋) ∈ 𝐴) |
19 | 5, 11, 18 | 3jca 1126 |
. 2
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑉) → (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) |
20 | | simpr2 1193 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → 𝑋 ∈ 𝐴) |
21 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → 𝐴 = (Base‘𝑆)) |
22 | 20, 21 | eleqtrd 2841 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → 𝑋 ∈ (Base‘𝑆)) |
23 | | simpr3 1194 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → (𝐼‘𝑋) ∈ 𝐴) |
24 | 23, 21 | eleqtrd 2841 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → (𝐼‘𝑋) ∈ (Base‘𝑆)) |
25 | | eqid 2738 |
. . . . . 6
⊢
(∥r‘𝑆) = (∥r‘𝑆) |
26 | | eqid 2738 |
. . . . . 6
⊢
(.r‘𝑆) = (.r‘𝑆) |
27 | 6, 25, 26 | dvdsrmul 19805 |
. . . . 5
⊢ ((𝑋 ∈ (Base‘𝑆) ∧ (𝐼‘𝑋) ∈ (Base‘𝑆)) → 𝑋(∥r‘𝑆)((𝐼‘𝑋)(.r‘𝑆)𝑋)) |
28 | 22, 24, 27 | syl2anc 583 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → 𝑋(∥r‘𝑆)((𝐼‘𝑋)(.r‘𝑆)𝑋)) |
29 | | subrgrcl 19944 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) |
30 | 29 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → 𝑅 ∈ Ring) |
31 | | simpr1 1192 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → 𝑋 ∈ 𝑈) |
32 | | eqid 2738 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
33 | | eqid 2738 |
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) |
34 | 2, 16, 32, 33 | unitlinv 19834 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝐼‘𝑋)(.r‘𝑅)𝑋) = (1r‘𝑅)) |
35 | 30, 31, 34 | syl2anc 583 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → ((𝐼‘𝑋)(.r‘𝑅)𝑋) = (1r‘𝑅)) |
36 | 1, 32 | ressmulr 16943 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(.r‘𝑅) =
(.r‘𝑆)) |
37 | 36 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → (.r‘𝑅) = (.r‘𝑆)) |
38 | 37 | oveqd 7272 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → ((𝐼‘𝑋)(.r‘𝑅)𝑋) = ((𝐼‘𝑋)(.r‘𝑆)𝑋)) |
39 | 1, 33 | subrg1 19949 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(1r‘𝑅) =
(1r‘𝑆)) |
40 | 39 | adantr 480 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → (1r‘𝑅) = (1r‘𝑆)) |
41 | 35, 38, 40 | 3eqtr3d 2786 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → ((𝐼‘𝑋)(.r‘𝑆)𝑋) = (1r‘𝑆)) |
42 | 28, 41 | breqtrd 5096 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → 𝑋(∥r‘𝑆)(1r‘𝑆)) |
43 | | eqid 2738 |
. . . . . . 7
⊢
(oppr‘𝑆) = (oppr‘𝑆) |
44 | 43, 6 | opprbas 19784 |
. . . . . 6
⊢
(Base‘𝑆) =
(Base‘(oppr‘𝑆)) |
45 | | eqid 2738 |
. . . . . 6
⊢
(∥r‘(oppr‘𝑆)) =
(∥r‘(oppr‘𝑆)) |
46 | | eqid 2738 |
. . . . . 6
⊢
(.r‘(oppr‘𝑆)) =
(.r‘(oppr‘𝑆)) |
47 | 44, 45, 46 | dvdsrmul 19805 |
. . . . 5
⊢ ((𝑋 ∈ (Base‘𝑆) ∧ (𝐼‘𝑋) ∈ (Base‘𝑆)) → 𝑋(∥r‘(oppr‘𝑆))((𝐼‘𝑋)(.r‘(oppr‘𝑆))𝑋)) |
48 | 22, 24, 47 | syl2anc 583 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → 𝑋(∥r‘(oppr‘𝑆))((𝐼‘𝑋)(.r‘(oppr‘𝑆))𝑋)) |
49 | 6, 26, 43, 46 | opprmul 19780 |
. . . . 5
⊢ ((𝐼‘𝑋)(.r‘(oppr‘𝑆))𝑋) = (𝑋(.r‘𝑆)(𝐼‘𝑋)) |
50 | 2, 16, 32, 33 | unitrinv 19835 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋(.r‘𝑅)(𝐼‘𝑋)) = (1r‘𝑅)) |
51 | 30, 31, 50 | syl2anc 583 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → (𝑋(.r‘𝑅)(𝐼‘𝑋)) = (1r‘𝑅)) |
52 | 37 | oveqd 7272 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → (𝑋(.r‘𝑅)(𝐼‘𝑋)) = (𝑋(.r‘𝑆)(𝐼‘𝑋))) |
53 | 51, 52, 40 | 3eqtr3d 2786 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → (𝑋(.r‘𝑆)(𝐼‘𝑋)) = (1r‘𝑆)) |
54 | 49, 53 | eqtrid 2790 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → ((𝐼‘𝑋)(.r‘(oppr‘𝑆))𝑋) = (1r‘𝑆)) |
55 | 48, 54 | breqtrd 5096 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → 𝑋(∥r‘(oppr‘𝑆))(1r‘𝑆)) |
56 | | eqid 2738 |
. . . 4
⊢
(1r‘𝑆) = (1r‘𝑆) |
57 | 3, 56, 25, 43, 45 | isunit 19814 |
. . 3
⊢ (𝑋 ∈ 𝑉 ↔ (𝑋(∥r‘𝑆)(1r‘𝑆) ∧ 𝑋(∥r‘(oppr‘𝑆))(1r‘𝑆))) |
58 | 42, 55, 57 | sylanbrc 582 |
. 2
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴)) → 𝑋 ∈ 𝑉) |
59 | 19, 58 | impbida 797 |
1
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴))) |