Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressply10g Structured version   Visualization version   GIF version

Theorem ressply10g 32602
Description: A restricted polynomial algebra has the same group identity (zero polynomial). (Contributed by Thierry Arnoux, 20-Jan-2025.)
Hypotheses
Ref Expression
ressply.1 𝑆 = (Poly1𝑅)
ressply.2 𝐻 = (𝑅s 𝑇)
ressply.3 𝑈 = (Poly1𝐻)
ressply.4 𝐵 = (Base‘𝑈)
ressply.5 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressply10g.6 𝑍 = (0g𝑆)
Assertion
Ref Expression
ressply10g (𝜑𝑍 = (0g𝑈))

Proof of Theorem ressply10g
StepHypRef Expression
1 ressply.1 . . . . 5 𝑆 = (Poly1𝑅)
2 eqid 2733 . . . . 5 (algSc‘𝑆) = (algSc‘𝑆)
3 ressply.2 . . . . 5 𝐻 = (𝑅s 𝑇)
4 ressply.3 . . . . 5 𝑈 = (Poly1𝐻)
5 ressply.5 . . . . 5 (𝜑𝑇 ∈ (SubRing‘𝑅))
6 eqid 2733 . . . . 5 (algSc‘𝑈) = (algSc‘𝑈)
71, 2, 3, 4, 5, 6subrg1ascl 21762 . . . 4 (𝜑 → (algSc‘𝑈) = ((algSc‘𝑆) ↾ 𝑇))
87fveq1d 6889 . . 3 (𝜑 → ((algSc‘𝑈)‘(0g𝐻)) = (((algSc‘𝑆) ↾ 𝑇)‘(0g𝐻)))
9 eqid 2733 . . . 4 (0g𝐻) = (0g𝐻)
10 eqid 2733 . . . 4 (0g𝑈) = (0g𝑈)
113subrgring 20353 . . . . 5 (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring)
125, 11syl 17 . . . 4 (𝜑𝐻 ∈ Ring)
134, 6, 9, 10, 12ply1ascl0 32601 . . 3 (𝜑 → ((algSc‘𝑈)‘(0g𝐻)) = (0g𝑈))
14 eqid 2733 . . . . . . 7 (0g𝑅) = (0g𝑅)
153, 14subrg0 20357 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → (0g𝑅) = (0g𝐻))
165, 15syl 17 . . . . 5 (𝜑 → (0g𝑅) = (0g𝐻))
17 subrgsubg 20356 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ∈ (SubGrp‘𝑅))
1814subg0cl 19007 . . . . . 6 (𝑇 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝑇)
195, 17, 183syl 18 . . . . 5 (𝜑 → (0g𝑅) ∈ 𝑇)
2016, 19eqeltrrd 2835 . . . 4 (𝜑 → (0g𝐻) ∈ 𝑇)
2120fvresd 6907 . . 3 (𝜑 → (((algSc‘𝑆) ↾ 𝑇)‘(0g𝐻)) = ((algSc‘𝑆)‘(0g𝐻)))
228, 13, 213eqtr3d 2781 . 2 (𝜑 → (0g𝑈) = ((algSc‘𝑆)‘(0g𝐻)))
2316fveq2d 6891 . 2 (𝜑 → ((algSc‘𝑆)‘(0g𝑅)) = ((algSc‘𝑆)‘(0g𝐻)))
24 ressply10g.6 . . 3 𝑍 = (0g𝑆)
25 subrgrcl 20355 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
265, 25syl 17 . . 3 (𝜑𝑅 ∈ Ring)
271, 2, 14, 24, 26ply1ascl0 32601 . 2 (𝜑 → ((algSc‘𝑆)‘(0g𝑅)) = 𝑍)
2822, 23, 273eqtr2rd 2780 1 (𝜑𝑍 = (0g𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  cres 5676  cfv 6539  (class class class)co 7403  Basecbs 17139  s cress 17168  0gc0g 17380  SubGrpcsubg 18993  Ringcrg 20046  SubRingcsubrg 20346  algSccascl 21390  Poly1cpl1 21682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4907  df-int 4949  df-iun 4997  df-iin 4998  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-isom 6548  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7664  df-ofr 7665  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8141  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-1o 8460  df-er 8698  df-map 8817  df-pm 8818  df-ixp 8887  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-sup 9432  df-oi 9500  df-card 9929  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-nn 12208  df-2 12270  df-3 12271  df-4 12272  df-5 12273  df-6 12274  df-7 12275  df-8 12276  df-9 12277  df-n0 12468  df-z 12554  df-dec 12673  df-uz 12818  df-fz 13480  df-fzo 13623  df-seq 13962  df-hash 14286  df-struct 17075  df-sets 17092  df-slot 17110  df-ndx 17122  df-base 17140  df-ress 17169  df-plusg 17205  df-mulr 17206  df-sca 17208  df-vsca 17209  df-ip 17210  df-tset 17211  df-ple 17212  df-ds 17214  df-hom 17216  df-cco 17217  df-0g 17382  df-gsum 17383  df-prds 17388  df-pws 17390  df-mre 17525  df-mrc 17526  df-acs 17528  df-mgm 18556  df-sgrp 18605  df-mnd 18621  df-mhm 18666  df-submnd 18667  df-grp 18817  df-minusg 18818  df-sbg 18819  df-mulg 18944  df-subg 18996  df-ghm 19083  df-cntz 19174  df-cmn 19642  df-abl 19643  df-mgp 19979  df-ur 19996  df-ring 20048  df-subrg 20348  df-lmod 20460  df-lss 20530  df-ascl 21393  df-psr 21443  df-mpl 21445  df-opsr 21447  df-psr1 21685  df-ply1 21687
This theorem is referenced by:  ressply1mon1p  32603  ressply1invg  32604  irngnzply1lem  32698  irngnzply1  32699
  Copyright terms: Public domain W3C validator