Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressply10g Structured version   Visualization version   GIF version

Theorem ressply10g 32651
Description: A restricted polynomial algebra has the same group identity (zero polynomial). (Contributed by Thierry Arnoux, 20-Jan-2025.)
Hypotheses
Ref Expression
ressply.1 𝑆 = (Poly1β€˜π‘…)
ressply.2 𝐻 = (𝑅 β†Ύs 𝑇)
ressply.3 π‘ˆ = (Poly1β€˜π»)
ressply.4 𝐡 = (Baseβ€˜π‘ˆ)
ressply.5 (πœ‘ β†’ 𝑇 ∈ (SubRingβ€˜π‘…))
ressply10g.6 𝑍 = (0gβ€˜π‘†)
Assertion
Ref Expression
ressply10g (πœ‘ β†’ 𝑍 = (0gβ€˜π‘ˆ))

Proof of Theorem ressply10g
StepHypRef Expression
1 ressply.1 . . . . 5 𝑆 = (Poly1β€˜π‘…)
2 eqid 2732 . . . . 5 (algScβ€˜π‘†) = (algScβ€˜π‘†)
3 ressply.2 . . . . 5 𝐻 = (𝑅 β†Ύs 𝑇)
4 ressply.3 . . . . 5 π‘ˆ = (Poly1β€˜π»)
5 ressply.5 . . . . 5 (πœ‘ β†’ 𝑇 ∈ (SubRingβ€˜π‘…))
6 eqid 2732 . . . . 5 (algScβ€˜π‘ˆ) = (algScβ€˜π‘ˆ)
71, 2, 3, 4, 5, 6subrg1ascl 21780 . . . 4 (πœ‘ β†’ (algScβ€˜π‘ˆ) = ((algScβ€˜π‘†) β†Ύ 𝑇))
87fveq1d 6893 . . 3 (πœ‘ β†’ ((algScβ€˜π‘ˆ)β€˜(0gβ€˜π»)) = (((algScβ€˜π‘†) β†Ύ 𝑇)β€˜(0gβ€˜π»)))
9 eqid 2732 . . . 4 (0gβ€˜π») = (0gβ€˜π»)
10 eqid 2732 . . . 4 (0gβ€˜π‘ˆ) = (0gβ€˜π‘ˆ)
113subrgring 20321 . . . . 5 (𝑇 ∈ (SubRingβ€˜π‘…) β†’ 𝐻 ∈ Ring)
125, 11syl 17 . . . 4 (πœ‘ β†’ 𝐻 ∈ Ring)
134, 6, 9, 10, 12ply1ascl0 32647 . . 3 (πœ‘ β†’ ((algScβ€˜π‘ˆ)β€˜(0gβ€˜π»)) = (0gβ€˜π‘ˆ))
14 eqid 2732 . . . . . . 7 (0gβ€˜π‘…) = (0gβ€˜π‘…)
153, 14subrg0 20325 . . . . . 6 (𝑇 ∈ (SubRingβ€˜π‘…) β†’ (0gβ€˜π‘…) = (0gβ€˜π»))
165, 15syl 17 . . . . 5 (πœ‘ β†’ (0gβ€˜π‘…) = (0gβ€˜π»))
17 subrgsubg 20324 . . . . . 6 (𝑇 ∈ (SubRingβ€˜π‘…) β†’ 𝑇 ∈ (SubGrpβ€˜π‘…))
1814subg0cl 19013 . . . . . 6 (𝑇 ∈ (SubGrpβ€˜π‘…) β†’ (0gβ€˜π‘…) ∈ 𝑇)
195, 17, 183syl 18 . . . . 5 (πœ‘ β†’ (0gβ€˜π‘…) ∈ 𝑇)
2016, 19eqeltrrd 2834 . . . 4 (πœ‘ β†’ (0gβ€˜π») ∈ 𝑇)
2120fvresd 6911 . . 3 (πœ‘ β†’ (((algScβ€˜π‘†) β†Ύ 𝑇)β€˜(0gβ€˜π»)) = ((algScβ€˜π‘†)β€˜(0gβ€˜π»)))
228, 13, 213eqtr3d 2780 . 2 (πœ‘ β†’ (0gβ€˜π‘ˆ) = ((algScβ€˜π‘†)β€˜(0gβ€˜π»)))
2316fveq2d 6895 . 2 (πœ‘ β†’ ((algScβ€˜π‘†)β€˜(0gβ€˜π‘…)) = ((algScβ€˜π‘†)β€˜(0gβ€˜π»)))
24 ressply10g.6 . . 3 𝑍 = (0gβ€˜π‘†)
25 subrgrcl 20323 . . . 4 (𝑇 ∈ (SubRingβ€˜π‘…) β†’ 𝑅 ∈ Ring)
265, 25syl 17 . . 3 (πœ‘ β†’ 𝑅 ∈ Ring)
271, 2, 14, 24, 26ply1ascl0 32647 . 2 (πœ‘ β†’ ((algScβ€˜π‘†)β€˜(0gβ€˜π‘…)) = 𝑍)
2822, 23, 273eqtr2rd 2779 1 (πœ‘ β†’ 𝑍 = (0gβ€˜π‘ˆ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106   β†Ύ cres 5678  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143   β†Ύs cress 17172  0gc0g 17384  SubGrpcsubg 18999  Ringcrg 20055  SubRingcsubrg 20314  algSccascl 21406  Poly1cpl1 21700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-ofr 7670  df-om 7855  df-1st 7974  df-2nd 7975  df-supp 8146  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-pm 8822  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-sup 9436  df-oi 9504  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13484  df-fzo 13627  df-seq 13966  df-hash 14290  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17386  df-gsum 17387  df-prds 17392  df-pws 17394  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-mhm 18670  df-submnd 18671  df-grp 18821  df-minusg 18822  df-sbg 18823  df-mulg 18950  df-subg 19002  df-ghm 19089  df-cntz 19180  df-cmn 19649  df-abl 19650  df-mgp 19987  df-ur 20004  df-ring 20057  df-subrg 20316  df-lmod 20472  df-lss 20542  df-ascl 21409  df-psr 21461  df-mpl 21463  df-opsr 21465  df-psr1 21703  df-ply1 21705
This theorem is referenced by:  ressply1mon1p  32652  ressply1invg  32653  irngnzply1lem  32749  irngnzply1  32750  irngnminplynz  32766  algextdeglem1  32767
  Copyright terms: Public domain W3C validator