MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgasclcl Structured version   Visualization version   GIF version

Theorem subrgasclcl 21475
Description: The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
subrgascl.p 𝑃 = (𝐼 mPoly 𝑅)
subrgascl.a 𝐴 = (algSc‘𝑃)
subrgascl.h 𝐻 = (𝑅s 𝑇)
subrgascl.u 𝑈 = (𝐼 mPoly 𝐻)
subrgascl.i (𝜑𝐼𝑊)
subrgascl.r (𝜑𝑇 ∈ (SubRing‘𝑅))
subrgasclcl.b 𝐵 = (Base‘𝑈)
subrgasclcl.k 𝐾 = (Base‘𝑅)
subrgasclcl.x (𝜑𝑋𝐾)
Assertion
Ref Expression
subrgasclcl (𝜑 → ((𝐴𝑋) ∈ 𝐵𝑋𝑇))

Proof of Theorem subrgasclcl
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 4492 . . . . 5 (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)) = 𝑋)
21eleq1d 2822 . . . 4 (𝑥 = (𝐼 × {0}) → (if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)) ∈ (Base‘𝐻) ↔ 𝑋 ∈ (Base‘𝐻)))
3 eqid 2736 . . . . . 6 (𝐼 mPwSer 𝐻) = (𝐼 mPwSer 𝐻)
4 eqid 2736 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
5 eqid 2736 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
6 eqid 2736 . . . . . 6 (Base‘(𝐼 mPwSer 𝐻)) = (Base‘(𝐼 mPwSer 𝐻))
7 subrgascl.p . . . . . . . . 9 𝑃 = (𝐼 mPoly 𝑅)
8 eqid 2736 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
9 subrgasclcl.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
10 subrgascl.a . . . . . . . . 9 𝐴 = (algSc‘𝑃)
11 subrgascl.i . . . . . . . . 9 (𝜑𝐼𝑊)
12 subrgascl.r . . . . . . . . . 10 (𝜑𝑇 ∈ (SubRing‘𝑅))
13 subrgrcl 20227 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
1412, 13syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
15 subrgasclcl.x . . . . . . . . 9 (𝜑𝑋𝐾)
167, 5, 8, 9, 10, 11, 14, 15mplascl 21472 . . . . . . . 8 (𝜑 → (𝐴𝑋) = (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))))
1716adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝐴𝑋) = (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))))
18 subrgascl.u . . . . . . . . . 10 𝑈 = (𝐼 mPoly 𝐻)
19 subrgasclcl.b . . . . . . . . . 10 𝐵 = (Base‘𝑈)
20 subrgascl.h . . . . . . . . . . . 12 𝐻 = (𝑅s 𝑇)
2120subrgring 20225 . . . . . . . . . . 11 (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring)
2212, 21syl 17 . . . . . . . . . 10 (𝜑𝐻 ∈ Ring)
233, 18, 19, 11, 22mplsubrg 21411 . . . . . . . . 9 (𝜑𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝐻)))
246subrgss 20223 . . . . . . . . 9 (𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝐻)) → 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻)))
2523, 24syl 17 . . . . . . . 8 (𝜑𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻)))
2625sselda 3944 . . . . . . 7 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝐴𝑋) ∈ (Base‘(𝐼 mPwSer 𝐻)))
2717, 26eqeltrrd 2839 . . . . . 6 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))) ∈ (Base‘(𝐼 mPwSer 𝐻)))
283, 4, 5, 6, 27psrelbas 21347 . . . . 5 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
29 eqid 2736 . . . . . 6 (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))) = (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)))
3029fmpt 7058 . . . . 5 (∀𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)) ∈ (Base‘𝐻) ↔ (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
3128, 30sylibr 233 . . . 4 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → ∀𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)) ∈ (Base‘𝐻))
3211adantr 481 . . . . 5 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → 𝐼𝑊)
335psrbag0 21470 . . . . 5 (𝐼𝑊 → (𝐼 × {0}) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
3432, 33syl 17 . . . 4 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝐼 × {0}) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
352, 31, 34rspcdva 3582 . . 3 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → 𝑋 ∈ (Base‘𝐻))
3620subrgbas 20231 . . . . 5 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
3712, 36syl 17 . . . 4 (𝜑𝑇 = (Base‘𝐻))
3837adantr 481 . . 3 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → 𝑇 = (Base‘𝐻))
3935, 38eleqtrrd 2841 . 2 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → 𝑋𝑇)
40 eqid 2736 . . . . . 6 (algSc‘𝑈) = (algSc‘𝑈)
417, 10, 20, 18, 11, 12, 40subrgascl 21474 . . . . 5 (𝜑 → (algSc‘𝑈) = (𝐴𝑇))
4241fveq1d 6844 . . . 4 (𝜑 → ((algSc‘𝑈)‘𝑋) = ((𝐴𝑇)‘𝑋))
43 fvres 6861 . . . 4 (𝑋𝑇 → ((𝐴𝑇)‘𝑋) = (𝐴𝑋))
4442, 43sylan9eq 2796 . . 3 ((𝜑𝑋𝑇) → ((algSc‘𝑈)‘𝑋) = (𝐴𝑋))
45 eqid 2736 . . . . . . 7 (Scalar‘𝑈) = (Scalar‘𝑈)
4618mplring 21424 . . . . . . 7 ((𝐼𝑊𝐻 ∈ Ring) → 𝑈 ∈ Ring)
4718mpllmod 21423 . . . . . . 7 ((𝐼𝑊𝐻 ∈ Ring) → 𝑈 ∈ LMod)
48 eqid 2736 . . . . . . 7 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
4940, 45, 46, 47, 48, 19asclf 21285 . . . . . 6 ((𝐼𝑊𝐻 ∈ Ring) → (algSc‘𝑈):(Base‘(Scalar‘𝑈))⟶𝐵)
5011, 22, 49syl2anc 584 . . . . 5 (𝜑 → (algSc‘𝑈):(Base‘(Scalar‘𝑈))⟶𝐵)
5150adantr 481 . . . 4 ((𝜑𝑋𝑇) → (algSc‘𝑈):(Base‘(Scalar‘𝑈))⟶𝐵)
5218, 11, 22mplsca 21417 . . . . . . . 8 (𝜑𝐻 = (Scalar‘𝑈))
5352fveq2d 6846 . . . . . . 7 (𝜑 → (Base‘𝐻) = (Base‘(Scalar‘𝑈)))
5437, 53eqtrd 2776 . . . . . 6 (𝜑𝑇 = (Base‘(Scalar‘𝑈)))
5554eleq2d 2823 . . . . 5 (𝜑 → (𝑋𝑇𝑋 ∈ (Base‘(Scalar‘𝑈))))
5655biimpa 477 . . . 4 ((𝜑𝑋𝑇) → 𝑋 ∈ (Base‘(Scalar‘𝑈)))
5751, 56ffvelcdmd 7036 . . 3 ((𝜑𝑋𝑇) → ((algSc‘𝑈)‘𝑋) ∈ 𝐵)
5844, 57eqeltrrd 2839 . 2 ((𝜑𝑋𝑇) → (𝐴𝑋) ∈ 𝐵)
5939, 58impbida 799 1 (𝜑 → ((𝐴𝑋) ∈ 𝐵𝑋𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  {crab 3407  wss 3910  ifcif 4486  {csn 4586  cmpt 5188   × cxp 5631  ccnv 5632  cres 5635  cima 5636  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  Fincfn 8883  0cc0 11051  cn 12153  0cn0 12413  Basecbs 17083  s cress 17112  Scalarcsca 17136  0gc0g 17321  Ringcrg 19964  SubRingcsubrg 20218  algSccascl 21258   mPwSer cmps 21306   mPoly cmpl 21308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-subrg 20220  df-lmod 20324  df-lss 20393  df-ascl 21261  df-psr 21311  df-mpl 21313
This theorem is referenced by:  subrg1asclcl  21631
  Copyright terms: Public domain W3C validator