MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgasclcl Structured version   Visualization version   GIF version

Theorem subrgasclcl 21990
Description: The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
subrgascl.p 𝑃 = (𝐼 mPoly 𝑅)
subrgascl.a 𝐴 = (algSc‘𝑃)
subrgascl.h 𝐻 = (𝑅s 𝑇)
subrgascl.u 𝑈 = (𝐼 mPoly 𝐻)
subrgascl.i (𝜑𝐼𝑊)
subrgascl.r (𝜑𝑇 ∈ (SubRing‘𝑅))
subrgasclcl.b 𝐵 = (Base‘𝑈)
subrgasclcl.k 𝐾 = (Base‘𝑅)
subrgasclcl.x (𝜑𝑋𝐾)
Assertion
Ref Expression
subrgasclcl (𝜑 → ((𝐴𝑋) ∈ 𝐵𝑋𝑇))

Proof of Theorem subrgasclcl
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 4484 . . . . 5 (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)) = 𝑋)
21eleq1d 2813 . . . 4 (𝑥 = (𝐼 × {0}) → (if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)) ∈ (Base‘𝐻) ↔ 𝑋 ∈ (Base‘𝐻)))
3 eqid 2729 . . . . . 6 (𝐼 mPwSer 𝐻) = (𝐼 mPwSer 𝐻)
4 eqid 2729 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
5 eqid 2729 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
6 eqid 2729 . . . . . 6 (Base‘(𝐼 mPwSer 𝐻)) = (Base‘(𝐼 mPwSer 𝐻))
7 subrgascl.p . . . . . . . . 9 𝑃 = (𝐼 mPoly 𝑅)
8 eqid 2729 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
9 subrgasclcl.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
10 subrgascl.a . . . . . . . . 9 𝐴 = (algSc‘𝑃)
11 subrgascl.i . . . . . . . . 9 (𝜑𝐼𝑊)
12 subrgascl.r . . . . . . . . . 10 (𝜑𝑇 ∈ (SubRing‘𝑅))
13 subrgrcl 20479 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
1412, 13syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
15 subrgasclcl.x . . . . . . . . 9 (𝜑𝑋𝐾)
167, 5, 8, 9, 10, 11, 14, 15mplascl 21987 . . . . . . . 8 (𝜑 → (𝐴𝑋) = (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))))
1716adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝐴𝑋) = (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))))
18 subrgascl.u . . . . . . . . . 10 𝑈 = (𝐼 mPoly 𝐻)
19 subrgasclcl.b . . . . . . . . . 10 𝐵 = (Base‘𝑈)
20 subrgascl.h . . . . . . . . . . . 12 𝐻 = (𝑅s 𝑇)
2120subrgring 20477 . . . . . . . . . . 11 (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring)
2212, 21syl 17 . . . . . . . . . 10 (𝜑𝐻 ∈ Ring)
233, 18, 19, 11, 22mplsubrg 21930 . . . . . . . . 9 (𝜑𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝐻)))
246subrgss 20475 . . . . . . . . 9 (𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝐻)) → 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻)))
2523, 24syl 17 . . . . . . . 8 (𝜑𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻)))
2625sselda 3937 . . . . . . 7 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝐴𝑋) ∈ (Base‘(𝐼 mPwSer 𝐻)))
2717, 26eqeltrrd 2829 . . . . . 6 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))) ∈ (Base‘(𝐼 mPwSer 𝐻)))
283, 4, 5, 6, 27psrelbas 21859 . . . . 5 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
29 eqid 2729 . . . . . 6 (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))) = (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)))
3029fmpt 7048 . . . . 5 (∀𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)) ∈ (Base‘𝐻) ↔ (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
3128, 30sylibr 234 . . . 4 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → ∀𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)) ∈ (Base‘𝐻))
3211adantr 480 . . . . 5 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → 𝐼𝑊)
335psrbag0 21985 . . . . 5 (𝐼𝑊 → (𝐼 × {0}) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
3432, 33syl 17 . . . 4 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝐼 × {0}) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
352, 31, 34rspcdva 3580 . . 3 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → 𝑋 ∈ (Base‘𝐻))
3620subrgbas 20484 . . . . 5 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
3712, 36syl 17 . . . 4 (𝜑𝑇 = (Base‘𝐻))
3837adantr 480 . . 3 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → 𝑇 = (Base‘𝐻))
3935, 38eleqtrrd 2831 . 2 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → 𝑋𝑇)
40 eqid 2729 . . . . . 6 (algSc‘𝑈) = (algSc‘𝑈)
417, 10, 20, 18, 11, 12, 40subrgascl 21989 . . . . 5 (𝜑 → (algSc‘𝑈) = (𝐴𝑇))
4241fveq1d 6828 . . . 4 (𝜑 → ((algSc‘𝑈)‘𝑋) = ((𝐴𝑇)‘𝑋))
43 fvres 6845 . . . 4 (𝑋𝑇 → ((𝐴𝑇)‘𝑋) = (𝐴𝑋))
4442, 43sylan9eq 2784 . . 3 ((𝜑𝑋𝑇) → ((algSc‘𝑈)‘𝑋) = (𝐴𝑋))
45 eqid 2729 . . . . . . 7 (Scalar‘𝑈) = (Scalar‘𝑈)
4618mplring 21944 . . . . . . 7 ((𝐼𝑊𝐻 ∈ Ring) → 𝑈 ∈ Ring)
4718mpllmod 21943 . . . . . . 7 ((𝐼𝑊𝐻 ∈ Ring) → 𝑈 ∈ LMod)
48 eqid 2729 . . . . . . 7 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
4940, 45, 46, 47, 48, 19asclf 21807 . . . . . 6 ((𝐼𝑊𝐻 ∈ Ring) → (algSc‘𝑈):(Base‘(Scalar‘𝑈))⟶𝐵)
5011, 22, 49syl2anc 584 . . . . 5 (𝜑 → (algSc‘𝑈):(Base‘(Scalar‘𝑈))⟶𝐵)
5150adantr 480 . . . 4 ((𝜑𝑋𝑇) → (algSc‘𝑈):(Base‘(Scalar‘𝑈))⟶𝐵)
5218, 11, 22mplsca 21938 . . . . . . . 8 (𝜑𝐻 = (Scalar‘𝑈))
5352fveq2d 6830 . . . . . . 7 (𝜑 → (Base‘𝐻) = (Base‘(Scalar‘𝑈)))
5437, 53eqtrd 2764 . . . . . 6 (𝜑𝑇 = (Base‘(Scalar‘𝑈)))
5554eleq2d 2814 . . . . 5 (𝜑 → (𝑋𝑇𝑋 ∈ (Base‘(Scalar‘𝑈))))
5655biimpa 476 . . . 4 ((𝜑𝑋𝑇) → 𝑋 ∈ (Base‘(Scalar‘𝑈)))
5751, 56ffvelcdmd 7023 . . 3 ((𝜑𝑋𝑇) → ((algSc‘𝑈)‘𝑋) ∈ 𝐵)
5844, 57eqeltrrd 2829 . 2 ((𝜑𝑋𝑇) → (𝐴𝑋) ∈ 𝐵)
5939, 58impbida 800 1 (𝜑 → ((𝐴𝑋) ∈ 𝐵𝑋𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3396  wss 3905  ifcif 4478  {csn 4579  cmpt 5176   × cxp 5621  ccnv 5622  cres 5625  cima 5626  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  Fincfn 8879  0cc0 11028  cn 12146  0cn0 12402  Basecbs 17138  s cress 17159  Scalarcsca 17182  0gc0g 17361  Ringcrg 20136  SubRingcsubrg 20472  algSccascl 21777   mPwSer cmps 21829   mPoly cmpl 21831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-subrng 20449  df-subrg 20473  df-lmod 20783  df-lss 20853  df-ascl 21780  df-psr 21834  df-mpl 21836
This theorem is referenced by:  subrg1asclcl  22162
  Copyright terms: Public domain W3C validator