MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgasclcl Structured version   Visualization version   GIF version

Theorem subrgasclcl 21950
Description: The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
subrgascl.p 𝑃 = (𝐼 mPoly 𝑅)
subrgascl.a 𝐴 = (algSc‘𝑃)
subrgascl.h 𝐻 = (𝑅s 𝑇)
subrgascl.u 𝑈 = (𝐼 mPoly 𝐻)
subrgascl.i (𝜑𝐼𝑊)
subrgascl.r (𝜑𝑇 ∈ (SubRing‘𝑅))
subrgasclcl.b 𝐵 = (Base‘𝑈)
subrgasclcl.k 𝐾 = (Base‘𝑅)
subrgasclcl.x (𝜑𝑋𝐾)
Assertion
Ref Expression
subrgasclcl (𝜑 → ((𝐴𝑋) ∈ 𝐵𝑋𝑇))

Proof of Theorem subrgasclcl
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 4490 . . . . 5 (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)) = 𝑋)
21eleq1d 2813 . . . 4 (𝑥 = (𝐼 × {0}) → (if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)) ∈ (Base‘𝐻) ↔ 𝑋 ∈ (Base‘𝐻)))
3 eqid 2729 . . . . . 6 (𝐼 mPwSer 𝐻) = (𝐼 mPwSer 𝐻)
4 eqid 2729 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
5 eqid 2729 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
6 eqid 2729 . . . . . 6 (Base‘(𝐼 mPwSer 𝐻)) = (Base‘(𝐼 mPwSer 𝐻))
7 subrgascl.p . . . . . . . . 9 𝑃 = (𝐼 mPoly 𝑅)
8 eqid 2729 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
9 subrgasclcl.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
10 subrgascl.a . . . . . . . . 9 𝐴 = (algSc‘𝑃)
11 subrgascl.i . . . . . . . . 9 (𝜑𝐼𝑊)
12 subrgascl.r . . . . . . . . . 10 (𝜑𝑇 ∈ (SubRing‘𝑅))
13 subrgrcl 20461 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
1412, 13syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
15 subrgasclcl.x . . . . . . . . 9 (𝜑𝑋𝐾)
167, 5, 8, 9, 10, 11, 14, 15mplascl 21947 . . . . . . . 8 (𝜑 → (𝐴𝑋) = (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))))
1716adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝐴𝑋) = (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))))
18 subrgascl.u . . . . . . . . . 10 𝑈 = (𝐼 mPoly 𝐻)
19 subrgasclcl.b . . . . . . . . . 10 𝐵 = (Base‘𝑈)
20 subrgascl.h . . . . . . . . . . . 12 𝐻 = (𝑅s 𝑇)
2120subrgring 20459 . . . . . . . . . . 11 (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring)
2212, 21syl 17 . . . . . . . . . 10 (𝜑𝐻 ∈ Ring)
233, 18, 19, 11, 22mplsubrg 21890 . . . . . . . . 9 (𝜑𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝐻)))
246subrgss 20457 . . . . . . . . 9 (𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝐻)) → 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻)))
2523, 24syl 17 . . . . . . . 8 (𝜑𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻)))
2625sselda 3943 . . . . . . 7 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝐴𝑋) ∈ (Base‘(𝐼 mPwSer 𝐻)))
2717, 26eqeltrrd 2829 . . . . . 6 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))) ∈ (Base‘(𝐼 mPwSer 𝐻)))
283, 4, 5, 6, 27psrelbas 21819 . . . . 5 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
29 eqid 2729 . . . . . 6 (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))) = (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)))
3029fmpt 7064 . . . . 5 (∀𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)) ∈ (Base‘𝐻) ↔ (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
3128, 30sylibr 234 . . . 4 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → ∀𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)) ∈ (Base‘𝐻))
3211adantr 480 . . . . 5 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → 𝐼𝑊)
335psrbag0 21945 . . . . 5 (𝐼𝑊 → (𝐼 × {0}) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
3432, 33syl 17 . . . 4 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝐼 × {0}) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
352, 31, 34rspcdva 3586 . . 3 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → 𝑋 ∈ (Base‘𝐻))
3620subrgbas 20466 . . . . 5 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
3712, 36syl 17 . . . 4 (𝜑𝑇 = (Base‘𝐻))
3837adantr 480 . . 3 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → 𝑇 = (Base‘𝐻))
3935, 38eleqtrrd 2831 . 2 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → 𝑋𝑇)
40 eqid 2729 . . . . . 6 (algSc‘𝑈) = (algSc‘𝑈)
417, 10, 20, 18, 11, 12, 40subrgascl 21949 . . . . 5 (𝜑 → (algSc‘𝑈) = (𝐴𝑇))
4241fveq1d 6842 . . . 4 (𝜑 → ((algSc‘𝑈)‘𝑋) = ((𝐴𝑇)‘𝑋))
43 fvres 6859 . . . 4 (𝑋𝑇 → ((𝐴𝑇)‘𝑋) = (𝐴𝑋))
4442, 43sylan9eq 2784 . . 3 ((𝜑𝑋𝑇) → ((algSc‘𝑈)‘𝑋) = (𝐴𝑋))
45 eqid 2729 . . . . . . 7 (Scalar‘𝑈) = (Scalar‘𝑈)
4618mplring 21904 . . . . . . 7 ((𝐼𝑊𝐻 ∈ Ring) → 𝑈 ∈ Ring)
4718mpllmod 21903 . . . . . . 7 ((𝐼𝑊𝐻 ∈ Ring) → 𝑈 ∈ LMod)
48 eqid 2729 . . . . . . 7 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
4940, 45, 46, 47, 48, 19asclf 21767 . . . . . 6 ((𝐼𝑊𝐻 ∈ Ring) → (algSc‘𝑈):(Base‘(Scalar‘𝑈))⟶𝐵)
5011, 22, 49syl2anc 584 . . . . 5 (𝜑 → (algSc‘𝑈):(Base‘(Scalar‘𝑈))⟶𝐵)
5150adantr 480 . . . 4 ((𝜑𝑋𝑇) → (algSc‘𝑈):(Base‘(Scalar‘𝑈))⟶𝐵)
5218, 11, 22mplsca 21898 . . . . . . . 8 (𝜑𝐻 = (Scalar‘𝑈))
5352fveq2d 6844 . . . . . . 7 (𝜑 → (Base‘𝐻) = (Base‘(Scalar‘𝑈)))
5437, 53eqtrd 2764 . . . . . 6 (𝜑𝑇 = (Base‘(Scalar‘𝑈)))
5554eleq2d 2814 . . . . 5 (𝜑 → (𝑋𝑇𝑋 ∈ (Base‘(Scalar‘𝑈))))
5655biimpa 476 . . . 4 ((𝜑𝑋𝑇) → 𝑋 ∈ (Base‘(Scalar‘𝑈)))
5751, 56ffvelcdmd 7039 . . 3 ((𝜑𝑋𝑇) → ((algSc‘𝑈)‘𝑋) ∈ 𝐵)
5844, 57eqeltrrd 2829 . 2 ((𝜑𝑋𝑇) → (𝐴𝑋) ∈ 𝐵)
5939, 58impbida 800 1 (𝜑 → ((𝐴𝑋) ∈ 𝐵𝑋𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3402  wss 3911  ifcif 4484  {csn 4585  cmpt 5183   × cxp 5629  ccnv 5630  cres 5633  cima 5634  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  Fincfn 8895  0cc0 11044  cn 12162  0cn0 12418  Basecbs 17155  s cress 17176  Scalarcsca 17199  0gc0g 17378  Ringcrg 20118  SubRingcsubrg 20454  algSccascl 21737   mPwSer cmps 21789   mPoly cmpl 21791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-subrng 20431  df-subrg 20455  df-lmod 20744  df-lss 20814  df-ascl 21740  df-psr 21794  df-mpl 21796
This theorem is referenced by:  subrg1asclcl  22122
  Copyright terms: Public domain W3C validator