MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgasclcl Structured version   Visualization version   GIF version

Theorem subrgasclcl 19818
Description: The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
subrgascl.p 𝑃 = (𝐼 mPoly 𝑅)
subrgascl.a 𝐴 = (algSc‘𝑃)
subrgascl.h 𝐻 = (𝑅s 𝑇)
subrgascl.u 𝑈 = (𝐼 mPoly 𝐻)
subrgascl.i (𝜑𝐼𝑊)
subrgascl.r (𝜑𝑇 ∈ (SubRing‘𝑅))
subrgasclcl.b 𝐵 = (Base‘𝑈)
subrgasclcl.k 𝐾 = (Base‘𝑅)
subrgasclcl.x (𝜑𝑋𝐾)
Assertion
Ref Expression
subrgasclcl (𝜑 → ((𝐴𝑋) ∈ 𝐵𝑋𝑇))

Proof of Theorem subrgasclcl
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 4281 . . . . 5 (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)) = 𝑋)
21eleq1d 2861 . . . 4 (𝑥 = (𝐼 × {0}) → (if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)) ∈ (Base‘𝐻) ↔ 𝑋 ∈ (Base‘𝐻)))
3 eqid 2797 . . . . . 6 (𝐼 mPwSer 𝐻) = (𝐼 mPwSer 𝐻)
4 eqid 2797 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
5 eqid 2797 . . . . . 6 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
6 eqid 2797 . . . . . 6 (Base‘(𝐼 mPwSer 𝐻)) = (Base‘(𝐼 mPwSer 𝐻))
7 subrgascl.p . . . . . . . . 9 𝑃 = (𝐼 mPoly 𝑅)
8 eqid 2797 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
9 subrgasclcl.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
10 subrgascl.a . . . . . . . . 9 𝐴 = (algSc‘𝑃)
11 subrgascl.i . . . . . . . . 9 (𝜑𝐼𝑊)
12 subrgascl.r . . . . . . . . . 10 (𝜑𝑇 ∈ (SubRing‘𝑅))
13 subrgrcl 19100 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
1412, 13syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
15 subrgasclcl.x . . . . . . . . 9 (𝜑𝑋𝐾)
167, 5, 8, 9, 10, 11, 14, 15mplascl 19815 . . . . . . . 8 (𝜑 → (𝐴𝑋) = (𝑥 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))))
1716adantr 473 . . . . . . 7 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝐴𝑋) = (𝑥 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))))
18 subrgascl.u . . . . . . . . . 10 𝑈 = (𝐼 mPoly 𝐻)
19 subrgasclcl.b . . . . . . . . . 10 𝐵 = (Base‘𝑈)
20 subrgascl.h . . . . . . . . . . . 12 𝐻 = (𝑅s 𝑇)
2120subrgring 19098 . . . . . . . . . . 11 (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring)
2212, 21syl 17 . . . . . . . . . 10 (𝜑𝐻 ∈ Ring)
233, 18, 19, 11, 22mplsubrg 19760 . . . . . . . . 9 (𝜑𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝐻)))
246subrgss 19096 . . . . . . . . 9 (𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝐻)) → 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻)))
2523, 24syl 17 . . . . . . . 8 (𝜑𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻)))
2625sselda 3796 . . . . . . 7 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝐴𝑋) ∈ (Base‘(𝐼 mPwSer 𝐻)))
2717, 26eqeltrrd 2877 . . . . . 6 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝑥 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))) ∈ (Base‘(𝐼 mPwSer 𝐻)))
283, 4, 5, 6, 27psrelbas 19699 . . . . 5 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝑥 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))):{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
29 eqid 2797 . . . . . 6 (𝑥 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))) = (𝑥 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)))
3029fmpt 6604 . . . . 5 (∀𝑥 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)) ∈ (Base‘𝐻) ↔ (𝑥 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))):{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
3128, 30sylibr 226 . . . 4 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → ∀𝑥 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)) ∈ (Base‘𝐻))
3211adantr 473 . . . . 5 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → 𝐼𝑊)
335psrbag0 19813 . . . . 5 (𝐼𝑊 → (𝐼 × {0}) ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
3432, 33syl 17 . . . 4 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝐼 × {0}) ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
352, 31, 34rspcdva 3501 . . 3 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → 𝑋 ∈ (Base‘𝐻))
3620subrgbas 19104 . . . . 5 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
3712, 36syl 17 . . . 4 (𝜑𝑇 = (Base‘𝐻))
3837adantr 473 . . 3 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → 𝑇 = (Base‘𝐻))
3935, 38eleqtrrd 2879 . 2 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → 𝑋𝑇)
40 eqid 2797 . . . . . 6 (algSc‘𝑈) = (algSc‘𝑈)
417, 10, 20, 18, 11, 12, 40subrgascl 19817 . . . . 5 (𝜑 → (algSc‘𝑈) = (𝐴𝑇))
4241fveq1d 6411 . . . 4 (𝜑 → ((algSc‘𝑈)‘𝑋) = ((𝐴𝑇)‘𝑋))
43 fvres 6428 . . . 4 (𝑋𝑇 → ((𝐴𝑇)‘𝑋) = (𝐴𝑋))
4442, 43sylan9eq 2851 . . 3 ((𝜑𝑋𝑇) → ((algSc‘𝑈)‘𝑋) = (𝐴𝑋))
45 eqid 2797 . . . . . . 7 (Scalar‘𝑈) = (Scalar‘𝑈)
4618mplring 19772 . . . . . . 7 ((𝐼𝑊𝐻 ∈ Ring) → 𝑈 ∈ Ring)
4718mpllmod 19771 . . . . . . 7 ((𝐼𝑊𝐻 ∈ Ring) → 𝑈 ∈ LMod)
48 eqid 2797 . . . . . . 7 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
4940, 45, 46, 47, 48, 19asclf 19657 . . . . . 6 ((𝐼𝑊𝐻 ∈ Ring) → (algSc‘𝑈):(Base‘(Scalar‘𝑈))⟶𝐵)
5011, 22, 49syl2anc 580 . . . . 5 (𝜑 → (algSc‘𝑈):(Base‘(Scalar‘𝑈))⟶𝐵)
5150adantr 473 . . . 4 ((𝜑𝑋𝑇) → (algSc‘𝑈):(Base‘(Scalar‘𝑈))⟶𝐵)
5218, 11, 22mplsca 19765 . . . . . . . 8 (𝜑𝐻 = (Scalar‘𝑈))
5352fveq2d 6413 . . . . . . 7 (𝜑 → (Base‘𝐻) = (Base‘(Scalar‘𝑈)))
5437, 53eqtrd 2831 . . . . . 6 (𝜑𝑇 = (Base‘(Scalar‘𝑈)))
5554eleq2d 2862 . . . . 5 (𝜑 → (𝑋𝑇𝑋 ∈ (Base‘(Scalar‘𝑈))))
5655biimpa 469 . . . 4 ((𝜑𝑋𝑇) → 𝑋 ∈ (Base‘(Scalar‘𝑈)))
5751, 56ffvelrnd 6584 . . 3 ((𝜑𝑋𝑇) → ((algSc‘𝑈)‘𝑋) ∈ 𝐵)
5844, 57eqeltrrd 2877 . 2 ((𝜑𝑋𝑇) → (𝐴𝑋) ∈ 𝐵)
5939, 58impbida 836 1 (𝜑 → ((𝐴𝑋) ∈ 𝐵𝑋𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wral 3087  {crab 3091  wss 3767  ifcif 4275  {csn 4366  cmpt 4920   × cxp 5308  ccnv 5309  cres 5312  cima 5313  wf 6095  cfv 6099  (class class class)co 6876  𝑚 cmap 8093  Fincfn 8193  0cc0 10222  cn 11310  0cn0 11576  Basecbs 16181  s cress 16182  Scalarcsca 16267  0gc0g 16412  Ringcrg 18860  SubRingcsubrg 19091  algSccascl 19631   mPwSer cmps 19671   mPoly cmpl 19673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-inf2 8786  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-iin 4711  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-se 5270  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-isom 6108  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-of 7129  df-ofr 7130  df-om 7298  df-1st 7399  df-2nd 7400  df-supp 7531  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-2o 7798  df-oadd 7801  df-er 7980  df-map 8095  df-pm 8096  df-ixp 8147  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-fsupp 8516  df-oi 8655  df-card 9049  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-3 11373  df-4 11374  df-5 11375  df-6 11376  df-7 11377  df-8 11378  df-9 11379  df-n0 11577  df-z 11663  df-uz 11927  df-fz 12577  df-fzo 12717  df-seq 13052  df-hash 13367  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-ress 16189  df-plusg 16277  df-mulr 16278  df-sca 16280  df-vsca 16281  df-tset 16283  df-0g 16414  df-gsum 16415  df-mre 16558  df-mrc 16559  df-acs 16561  df-mgm 17554  df-sgrp 17596  df-mnd 17607  df-mhm 17647  df-submnd 17648  df-grp 17738  df-minusg 17739  df-sbg 17740  df-mulg 17854  df-subg 17901  df-ghm 17968  df-cntz 18059  df-cmn 18507  df-abl 18508  df-mgp 18803  df-ur 18815  df-ring 18862  df-subrg 19093  df-lmod 19180  df-lss 19248  df-ascl 19634  df-psr 19676  df-mpl 19678
This theorem is referenced by:  subrg1asclcl  19949
  Copyright terms: Public domain W3C validator