MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgasclcl Structured version   Visualization version   GIF version

Theorem subrgasclcl 21929
Description: The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
subrgascl.p 𝑃 = (𝐼 mPoly 𝑅)
subrgascl.a 𝐴 = (algSc‘𝑃)
subrgascl.h 𝐻 = (𝑅s 𝑇)
subrgascl.u 𝑈 = (𝐼 mPoly 𝐻)
subrgascl.i (𝜑𝐼𝑊)
subrgascl.r (𝜑𝑇 ∈ (SubRing‘𝑅))
subrgasclcl.b 𝐵 = (Base‘𝑈)
subrgasclcl.k 𝐾 = (Base‘𝑅)
subrgasclcl.x (𝜑𝑋𝐾)
Assertion
Ref Expression
subrgasclcl (𝜑 → ((𝐴𝑋) ∈ 𝐵𝑋𝑇))

Proof of Theorem subrgasclcl
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 4526 . . . . 5 (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)) = 𝑋)
21eleq1d 2810 . . . 4 (𝑥 = (𝐼 × {0}) → (if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)) ∈ (Base‘𝐻) ↔ 𝑋 ∈ (Base‘𝐻)))
3 eqid 2724 . . . . . 6 (𝐼 mPwSer 𝐻) = (𝐼 mPwSer 𝐻)
4 eqid 2724 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
5 eqid 2724 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
6 eqid 2724 . . . . . 6 (Base‘(𝐼 mPwSer 𝐻)) = (Base‘(𝐼 mPwSer 𝐻))
7 subrgascl.p . . . . . . . . 9 𝑃 = (𝐼 mPoly 𝑅)
8 eqid 2724 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
9 subrgasclcl.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
10 subrgascl.a . . . . . . . . 9 𝐴 = (algSc‘𝑃)
11 subrgascl.i . . . . . . . . 9 (𝜑𝐼𝑊)
12 subrgascl.r . . . . . . . . . 10 (𝜑𝑇 ∈ (SubRing‘𝑅))
13 subrgrcl 20463 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
1412, 13syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
15 subrgasclcl.x . . . . . . . . 9 (𝜑𝑋𝐾)
167, 5, 8, 9, 10, 11, 14, 15mplascl 21926 . . . . . . . 8 (𝜑 → (𝐴𝑋) = (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))))
1716adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝐴𝑋) = (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))))
18 subrgascl.u . . . . . . . . . 10 𝑈 = (𝐼 mPoly 𝐻)
19 subrgasclcl.b . . . . . . . . . 10 𝐵 = (Base‘𝑈)
20 subrgascl.h . . . . . . . . . . . 12 𝐻 = (𝑅s 𝑇)
2120subrgring 20461 . . . . . . . . . . 11 (𝑇 ∈ (SubRing‘𝑅) → 𝐻 ∈ Ring)
2212, 21syl 17 . . . . . . . . . 10 (𝜑𝐻 ∈ Ring)
233, 18, 19, 11, 22mplsubrg 21865 . . . . . . . . 9 (𝜑𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝐻)))
246subrgss 20459 . . . . . . . . 9 (𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝐻)) → 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻)))
2523, 24syl 17 . . . . . . . 8 (𝜑𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻)))
2625sselda 3974 . . . . . . 7 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝐴𝑋) ∈ (Base‘(𝐼 mPwSer 𝐻)))
2717, 26eqeltrrd 2826 . . . . . 6 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))) ∈ (Base‘(𝐼 mPwSer 𝐻)))
283, 4, 5, 6, 27psrelbas 21798 . . . . 5 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
29 eqid 2724 . . . . . 6 (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))) = (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)))
3029fmpt 7101 . . . . 5 (∀𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)) ∈ (Base‘𝐻) ↔ (𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅))):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
3128, 30sylibr 233 . . . 4 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → ∀𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}if(𝑥 = (𝐼 × {0}), 𝑋, (0g𝑅)) ∈ (Base‘𝐻))
3211adantr 480 . . . . 5 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → 𝐼𝑊)
335psrbag0 21924 . . . . 5 (𝐼𝑊 → (𝐼 × {0}) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
3432, 33syl 17 . . . 4 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → (𝐼 × {0}) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
352, 31, 34rspcdva 3605 . . 3 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → 𝑋 ∈ (Base‘𝐻))
3620subrgbas 20468 . . . . 5 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
3712, 36syl 17 . . . 4 (𝜑𝑇 = (Base‘𝐻))
3837adantr 480 . . 3 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → 𝑇 = (Base‘𝐻))
3935, 38eleqtrrd 2828 . 2 ((𝜑 ∧ (𝐴𝑋) ∈ 𝐵) → 𝑋𝑇)
40 eqid 2724 . . . . . 6 (algSc‘𝑈) = (algSc‘𝑈)
417, 10, 20, 18, 11, 12, 40subrgascl 21928 . . . . 5 (𝜑 → (algSc‘𝑈) = (𝐴𝑇))
4241fveq1d 6883 . . . 4 (𝜑 → ((algSc‘𝑈)‘𝑋) = ((𝐴𝑇)‘𝑋))
43 fvres 6900 . . . 4 (𝑋𝑇 → ((𝐴𝑇)‘𝑋) = (𝐴𝑋))
4442, 43sylan9eq 2784 . . 3 ((𝜑𝑋𝑇) → ((algSc‘𝑈)‘𝑋) = (𝐴𝑋))
45 eqid 2724 . . . . . . 7 (Scalar‘𝑈) = (Scalar‘𝑈)
4618mplring 21879 . . . . . . 7 ((𝐼𝑊𝐻 ∈ Ring) → 𝑈 ∈ Ring)
4718mpllmod 21878 . . . . . . 7 ((𝐼𝑊𝐻 ∈ Ring) → 𝑈 ∈ LMod)
48 eqid 2724 . . . . . . 7 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
4940, 45, 46, 47, 48, 19asclf 21736 . . . . . 6 ((𝐼𝑊𝐻 ∈ Ring) → (algSc‘𝑈):(Base‘(Scalar‘𝑈))⟶𝐵)
5011, 22, 49syl2anc 583 . . . . 5 (𝜑 → (algSc‘𝑈):(Base‘(Scalar‘𝑈))⟶𝐵)
5150adantr 480 . . . 4 ((𝜑𝑋𝑇) → (algSc‘𝑈):(Base‘(Scalar‘𝑈))⟶𝐵)
5218, 11, 22mplsca 21873 . . . . . . . 8 (𝜑𝐻 = (Scalar‘𝑈))
5352fveq2d 6885 . . . . . . 7 (𝜑 → (Base‘𝐻) = (Base‘(Scalar‘𝑈)))
5437, 53eqtrd 2764 . . . . . 6 (𝜑𝑇 = (Base‘(Scalar‘𝑈)))
5554eleq2d 2811 . . . . 5 (𝜑 → (𝑋𝑇𝑋 ∈ (Base‘(Scalar‘𝑈))))
5655biimpa 476 . . . 4 ((𝜑𝑋𝑇) → 𝑋 ∈ (Base‘(Scalar‘𝑈)))
5751, 56ffvelcdmd 7077 . . 3 ((𝜑𝑋𝑇) → ((algSc‘𝑈)‘𝑋) ∈ 𝐵)
5844, 57eqeltrrd 2826 . 2 ((𝜑𝑋𝑇) → (𝐴𝑋) ∈ 𝐵)
5939, 58impbida 798 1 (𝜑 → ((𝐴𝑋) ∈ 𝐵𝑋𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wral 3053  {crab 3424  wss 3940  ifcif 4520  {csn 4620  cmpt 5221   × cxp 5664  ccnv 5665  cres 5668  cima 5669  wf 6529  cfv 6533  (class class class)co 7401  m cmap 8815  Fincfn 8934  0cc0 11105  cn 12208  0cn0 12468  Basecbs 17140  s cress 17169  Scalarcsca 17196  0gc0g 17381  Ringcrg 20123  SubRingcsubrg 20454  algSccascl 21707   mPwSer cmps 21757   mPoly cmpl 21759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-ofr 7664  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-map 8817  df-pm 8818  df-ixp 8887  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-sup 9432  df-oi 9500  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18560  df-sgrp 18639  df-mnd 18655  df-mhm 18700  df-submnd 18701  df-grp 18853  df-minusg 18854  df-sbg 18855  df-mulg 18983  df-subg 19035  df-ghm 19124  df-cntz 19218  df-cmn 19687  df-abl 19688  df-mgp 20025  df-rng 20043  df-ur 20072  df-ring 20125  df-subrng 20431  df-subrg 20456  df-lmod 20693  df-lss 20764  df-ascl 21710  df-psr 21762  df-mpl 21764
This theorem is referenced by:  subrg1asclcl  22092
  Copyright terms: Public domain W3C validator