Step | Hyp | Ref
| Expression |
1 | | iftrue 4533 |
. . . . 5
β’ (π₯ = (πΌ Γ {0}) β if(π₯ = (πΌ Γ {0}), π, (0gβπ
)) = π) |
2 | 1 | eleq1d 2818 |
. . . 4
β’ (π₯ = (πΌ Γ {0}) β (if(π₯ = (πΌ Γ {0}), π, (0gβπ
)) β (Baseβπ») β π β (Baseβπ»))) |
3 | | eqid 2732 |
. . . . . 6
β’ (πΌ mPwSer π») = (πΌ mPwSer π») |
4 | | eqid 2732 |
. . . . . 6
β’
(Baseβπ») =
(Baseβπ») |
5 | | eqid 2732 |
. . . . . 6
β’ {π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} = {π β (β0
βm πΌ)
β£ (β‘π β β) β
Fin} |
6 | | eqid 2732 |
. . . . . 6
β’
(Baseβ(πΌ
mPwSer π»)) =
(Baseβ(πΌ mPwSer π»)) |
7 | | subrgascl.p |
. . . . . . . . 9
β’ π = (πΌ mPoly π
) |
8 | | eqid 2732 |
. . . . . . . . 9
β’
(0gβπ
) = (0gβπ
) |
9 | | subrgasclcl.k |
. . . . . . . . 9
β’ πΎ = (Baseβπ
) |
10 | | subrgascl.a |
. . . . . . . . 9
β’ π΄ = (algScβπ) |
11 | | subrgascl.i |
. . . . . . . . 9
β’ (π β πΌ β π) |
12 | | subrgascl.r |
. . . . . . . . . 10
β’ (π β π β (SubRingβπ
)) |
13 | | subrgrcl 20360 |
. . . . . . . . . 10
β’ (π β (SubRingβπ
) β π
β Ring) |
14 | 12, 13 | syl 17 |
. . . . . . . . 9
β’ (π β π
β Ring) |
15 | | subrgasclcl.x |
. . . . . . . . 9
β’ (π β π β πΎ) |
16 | 7, 5, 8, 9, 10, 11, 14, 15 | mplascl 21616 |
. . . . . . . 8
β’ (π β (π΄βπ) = (π₯ β {π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} β¦
if(π₯ = (πΌ Γ {0}), π, (0gβπ
)))) |
17 | 16 | adantr 481 |
. . . . . . 7
β’ ((π β§ (π΄βπ) β π΅) β (π΄βπ) = (π₯ β {π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} β¦
if(π₯ = (πΌ Γ {0}), π, (0gβπ
)))) |
18 | | subrgascl.u |
. . . . . . . . . 10
β’ π = (πΌ mPoly π») |
19 | | subrgasclcl.b |
. . . . . . . . . 10
β’ π΅ = (Baseβπ) |
20 | | subrgascl.h |
. . . . . . . . . . . 12
β’ π» = (π
βΎs π) |
21 | 20 | subrgring 20358 |
. . . . . . . . . . 11
β’ (π β (SubRingβπ
) β π» β Ring) |
22 | 12, 21 | syl 17 |
. . . . . . . . . 10
β’ (π β π» β Ring) |
23 | 3, 18, 19, 11, 22 | mplsubrg 21555 |
. . . . . . . . 9
β’ (π β π΅ β (SubRingβ(πΌ mPwSer π»))) |
24 | 6 | subrgss 20356 |
. . . . . . . . 9
β’ (π΅ β (SubRingβ(πΌ mPwSer π»)) β π΅ β (Baseβ(πΌ mPwSer π»))) |
25 | 23, 24 | syl 17 |
. . . . . . . 8
β’ (π β π΅ β (Baseβ(πΌ mPwSer π»))) |
26 | 25 | sselda 3981 |
. . . . . . 7
β’ ((π β§ (π΄βπ) β π΅) β (π΄βπ) β (Baseβ(πΌ mPwSer π»))) |
27 | 17, 26 | eqeltrrd 2834 |
. . . . . 6
β’ ((π β§ (π΄βπ) β π΅) β (π₯ β {π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} β¦
if(π₯ = (πΌ Γ {0}), π, (0gβπ
))) β (Baseβ(πΌ mPwSer π»))) |
28 | 3, 4, 5, 6, 27 | psrelbas 21489 |
. . . . 5
β’ ((π β§ (π΄βπ) β π΅) β (π₯ β {π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} β¦
if(π₯ = (πΌ Γ {0}), π, (0gβπ
))):{π β (β0
βm πΌ)
β£ (β‘π β β) β
Fin}βΆ(Baseβπ»)) |
29 | | eqid 2732 |
. . . . . 6
β’ (π₯ β {π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} β¦
if(π₯ = (πΌ Γ {0}), π, (0gβπ
))) = (π₯ β {π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} β¦
if(π₯ = (πΌ Γ {0}), π, (0gβπ
))) |
30 | 29 | fmpt 7106 |
. . . . 5
β’
(βπ₯ β
{π β
(β0 βm πΌ) β£ (β‘π β β) β Fin}if(π₯ = (πΌ Γ {0}), π, (0gβπ
)) β (Baseβπ») β (π₯ β {π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} β¦
if(π₯ = (πΌ Γ {0}), π, (0gβπ
))):{π β (β0
βm πΌ)
β£ (β‘π β β) β
Fin}βΆ(Baseβπ»)) |
31 | 28, 30 | sylibr 233 |
. . . 4
β’ ((π β§ (π΄βπ) β π΅) β βπ₯ β {π β (β0
βm πΌ)
β£ (β‘π β β) β Fin}if(π₯ = (πΌ Γ {0}), π, (0gβπ
)) β (Baseβπ»)) |
32 | 11 | adantr 481 |
. . . . 5
β’ ((π β§ (π΄βπ) β π΅) β πΌ β π) |
33 | 5 | psrbag0 21614 |
. . . . 5
β’ (πΌ β π β (πΌ Γ {0}) β {π β (β0
βm πΌ)
β£ (β‘π β β) β
Fin}) |
34 | 32, 33 | syl 17 |
. . . 4
β’ ((π β§ (π΄βπ) β π΅) β (πΌ Γ {0}) β {π β (β0
βm πΌ)
β£ (β‘π β β) β
Fin}) |
35 | 2, 31, 34 | rspcdva 3613 |
. . 3
β’ ((π β§ (π΄βπ) β π΅) β π β (Baseβπ»)) |
36 | 20 | subrgbas 20364 |
. . . . 5
β’ (π β (SubRingβπ
) β π = (Baseβπ»)) |
37 | 12, 36 | syl 17 |
. . . 4
β’ (π β π = (Baseβπ»)) |
38 | 37 | adantr 481 |
. . 3
β’ ((π β§ (π΄βπ) β π΅) β π = (Baseβπ»)) |
39 | 35, 38 | eleqtrrd 2836 |
. 2
β’ ((π β§ (π΄βπ) β π΅) β π β π) |
40 | | eqid 2732 |
. . . . . 6
β’
(algScβπ) =
(algScβπ) |
41 | 7, 10, 20, 18, 11, 12, 40 | subrgascl 21618 |
. . . . 5
β’ (π β (algScβπ) = (π΄ βΎ π)) |
42 | 41 | fveq1d 6890 |
. . . 4
β’ (π β ((algScβπ)βπ) = ((π΄ βΎ π)βπ)) |
43 | | fvres 6907 |
. . . 4
β’ (π β π β ((π΄ βΎ π)βπ) = (π΄βπ)) |
44 | 42, 43 | sylan9eq 2792 |
. . 3
β’ ((π β§ π β π) β ((algScβπ)βπ) = (π΄βπ)) |
45 | | eqid 2732 |
. . . . . . 7
β’
(Scalarβπ) =
(Scalarβπ) |
46 | 18 | mplring 21569 |
. . . . . . 7
β’ ((πΌ β π β§ π» β Ring) β π β Ring) |
47 | 18 | mpllmod 21568 |
. . . . . . 7
β’ ((πΌ β π β§ π» β Ring) β π β LMod) |
48 | | eqid 2732 |
. . . . . . 7
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
49 | 40, 45, 46, 47, 48, 19 | asclf 21427 |
. . . . . 6
β’ ((πΌ β π β§ π» β Ring) β (algScβπ):(Baseβ(Scalarβπ))βΆπ΅) |
50 | 11, 22, 49 | syl2anc 584 |
. . . . 5
β’ (π β (algScβπ):(Baseβ(Scalarβπ))βΆπ΅) |
51 | 50 | adantr 481 |
. . . 4
β’ ((π β§ π β π) β (algScβπ):(Baseβ(Scalarβπ))βΆπ΅) |
52 | 18, 11, 22 | mplsca 21563 |
. . . . . . . 8
β’ (π β π» = (Scalarβπ)) |
53 | 52 | fveq2d 6892 |
. . . . . . 7
β’ (π β (Baseβπ») =
(Baseβ(Scalarβπ))) |
54 | 37, 53 | eqtrd 2772 |
. . . . . 6
β’ (π β π = (Baseβ(Scalarβπ))) |
55 | 54 | eleq2d 2819 |
. . . . 5
β’ (π β (π β π β π β (Baseβ(Scalarβπ)))) |
56 | 55 | biimpa 477 |
. . . 4
β’ ((π β§ π β π) β π β (Baseβ(Scalarβπ))) |
57 | 51, 56 | ffvelcdmd 7084 |
. . 3
β’ ((π β§ π β π) β ((algScβπ)βπ) β π΅) |
58 | 44, 57 | eqeltrrd 2834 |
. 2
β’ ((π β§ π β π) β (π΄βπ) β π΅) |
59 | 39, 58 | impbida 799 |
1
β’ (π β ((π΄βπ) β π΅ β π β π)) |