MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resrhm2b Structured version   Visualization version   GIF version

Theorem resrhm2b 20511
Description: Restriction of the codomain of a (ring) homomorphism. resghm2b 19166 analog. (Contributed by SN, 7-Feb-2025.)
Hypothesis
Ref Expression
resrhm2b.u 𝑈 = (𝑇s 𝑋)
Assertion
Ref Expression
resrhm2b ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ 𝐹 ∈ (𝑆 RingHom 𝑈)))

Proof of Theorem resrhm2b
StepHypRef Expression
1 subrgsubg 20486 . . . . . 6 (𝑋 ∈ (SubRing‘𝑇) → 𝑋 ∈ (SubGrp‘𝑇))
2 resrhm2b.u . . . . . . 7 𝑈 = (𝑇s 𝑋)
32resghm2b 19166 . . . . . 6 ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈)))
41, 3sylan 580 . . . . 5 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈)))
5 eqid 2729 . . . . . . . 8 (mulGrp‘𝑇) = (mulGrp‘𝑇)
65subrgsubm 20494 . . . . . . 7 (𝑋 ∈ (SubRing‘𝑇) → 𝑋 ∈ (SubMnd‘(mulGrp‘𝑇)))
7 eqid 2729 . . . . . . . 8 ((mulGrp‘𝑇) ↾s 𝑋) = ((mulGrp‘𝑇) ↾s 𝑋)
87resmhm2b 18749 . . . . . . 7 ((𝑋 ∈ (SubMnd‘(mulGrp‘𝑇)) ∧ ran 𝐹𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋))))
96, 8sylan 580 . . . . . 6 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋))))
10 subrgrcl 20485 . . . . . . . . . 10 (𝑋 ∈ (SubRing‘𝑇) → 𝑇 ∈ Ring)
112, 5mgpress 20059 . . . . . . . . . 10 ((𝑇 ∈ Ring ∧ 𝑋 ∈ (SubRing‘𝑇)) → ((mulGrp‘𝑇) ↾s 𝑋) = (mulGrp‘𝑈))
1210, 11mpancom 688 . . . . . . . . 9 (𝑋 ∈ (SubRing‘𝑇) → ((mulGrp‘𝑇) ↾s 𝑋) = (mulGrp‘𝑈))
1312adantr 480 . . . . . . . 8 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((mulGrp‘𝑇) ↾s 𝑋) = (mulGrp‘𝑈))
1413oveq2d 7403 . . . . . . 7 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋)) = ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))
1514eleq2d 2814 . . . . . 6 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))
169, 15bitrd 279 . . . . 5 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))
174, 16anbi12d 632 . . . 4 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))))
1817anbi2d 630 . . 3 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))) ↔ (𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))))
1910adantr 480 . . . . 5 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → 𝑇 ∈ Ring)
2019biantrud 531 . . . 4 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝑆 ∈ Ring ↔ (𝑆 ∈ Ring ∧ 𝑇 ∈ Ring)))
2120anbi1d 631 . . 3 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))) ↔ ((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))))))
222subrgring 20483 . . . . . 6 (𝑋 ∈ (SubRing‘𝑇) → 𝑈 ∈ Ring)
2322adantr 480 . . . . 5 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → 𝑈 ∈ Ring)
2423biantrud 531 . . . 4 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝑆 ∈ Ring ↔ (𝑆 ∈ Ring ∧ 𝑈 ∈ Ring)))
2524anbi1d 631 . . 3 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))))
2618, 21, 253bitr3d 309 . 2 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))))
27 eqid 2729 . . 3 (mulGrp‘𝑆) = (mulGrp‘𝑆)
2827, 5isrhm 20387 . 2 (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ ((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))))
29 eqid 2729 . . 3 (mulGrp‘𝑈) = (mulGrp‘𝑈)
3027, 29isrhm 20387 . 2 (𝐹 ∈ (𝑆 RingHom 𝑈) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))))
3126, 28, 303bitr4g 314 1 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ 𝐹 ∈ (𝑆 RingHom 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3914  ran crn 5639  cfv 6511  (class class class)co 7387  s cress 17200   MndHom cmhm 18708  SubMndcsubmnd 18709  SubGrpcsubg 19052   GrpHom cghm 19144  mulGrpcmgp 20049  Ringcrg 20142   RingHom crh 20378  SubRingcsubrg 20478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-subg 19055  df-ghm 19145  df-mgp 20050  df-ur 20091  df-ring 20144  df-rhm 20381  df-subrg 20479
This theorem is referenced by:  imadrhmcl  20706  idomsubr  33259  algextdeglem4  33710  selvcllem4  42569
  Copyright terms: Public domain W3C validator