Proof of Theorem resrhm2b
| Step | Hyp | Ref
| Expression |
| 1 | | subrgsubg 20578 |
. . . . . 6
⊢ (𝑋 ∈ (SubRing‘𝑇) → 𝑋 ∈ (SubGrp‘𝑇)) |
| 2 | | resrhm2b.u |
. . . . . . 7
⊢ 𝑈 = (𝑇 ↾s 𝑋) |
| 3 | 2 | resghm2b 19253 |
. . . . . 6
⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈))) |
| 4 | 1, 3 | sylan 580 |
. . . . 5
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈))) |
| 5 | | eqid 2736 |
. . . . . . . 8
⊢
(mulGrp‘𝑇) =
(mulGrp‘𝑇) |
| 6 | 5 | subrgsubm 20586 |
. . . . . . 7
⊢ (𝑋 ∈ (SubRing‘𝑇) → 𝑋 ∈ (SubMnd‘(mulGrp‘𝑇))) |
| 7 | | eqid 2736 |
. . . . . . . 8
⊢
((mulGrp‘𝑇)
↾s 𝑋) =
((mulGrp‘𝑇)
↾s 𝑋) |
| 8 | 7 | resmhm2b 18836 |
. . . . . . 7
⊢ ((𝑋 ∈
(SubMnd‘(mulGrp‘𝑇)) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋)))) |
| 9 | 6, 8 | sylan 580 |
. . . . . 6
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋)))) |
| 10 | | subrgrcl 20577 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (SubRing‘𝑇) → 𝑇 ∈ Ring) |
| 11 | 2, 5 | mgpress 20148 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ Ring ∧ 𝑋 ∈ (SubRing‘𝑇)) → ((mulGrp‘𝑇) ↾s 𝑋) = (mulGrp‘𝑈)) |
| 12 | 10, 11 | mpancom 688 |
. . . . . . . . 9
⊢ (𝑋 ∈ (SubRing‘𝑇) → ((mulGrp‘𝑇) ↾s 𝑋) = (mulGrp‘𝑈)) |
| 13 | 12 | adantr 480 |
. . . . . . . 8
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → ((mulGrp‘𝑇) ↾s 𝑋) = (mulGrp‘𝑈)) |
| 14 | 13 | oveq2d 7448 |
. . . . . . 7
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋)) = ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))) |
| 15 | 14 | eleq2d 2826 |
. . . . . 6
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))) |
| 16 | 9, 15 | bitrd 279 |
. . . . 5
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))) |
| 17 | 4, 16 | anbi12d 632 |
. . . 4
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))) |
| 18 | 17 | anbi2d 630 |
. . 3
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → ((𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))) ↔ (𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))))) |
| 19 | 10 | adantr 480 |
. . . . 5
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → 𝑇 ∈ Ring) |
| 20 | 19 | biantrud 531 |
. . . 4
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝑆 ∈ Ring ↔ (𝑆 ∈ Ring ∧ 𝑇 ∈ Ring))) |
| 21 | 20 | anbi1d 631 |
. . 3
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → ((𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))) ↔ ((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))))) |
| 22 | 2 | subrgring 20575 |
. . . . . 6
⊢ (𝑋 ∈ (SubRing‘𝑇) → 𝑈 ∈ Ring) |
| 23 | 22 | adantr 480 |
. . . . 5
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → 𝑈 ∈ Ring) |
| 24 | 23 | biantrud 531 |
. . . 4
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝑆 ∈ Ring ↔ (𝑆 ∈ Ring ∧ 𝑈 ∈ Ring))) |
| 25 | 24 | anbi1d 631 |
. . 3
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → ((𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))))) |
| 26 | 18, 21, 25 | 3bitr3d 309 |
. 2
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))))) |
| 27 | | eqid 2736 |
. . 3
⊢
(mulGrp‘𝑆) =
(mulGrp‘𝑆) |
| 28 | 27, 5 | isrhm 20479 |
. 2
⊢ (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ ((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))))) |
| 29 | | eqid 2736 |
. . 3
⊢
(mulGrp‘𝑈) =
(mulGrp‘𝑈) |
| 30 | 27, 29 | isrhm 20479 |
. 2
⊢ (𝐹 ∈ (𝑆 RingHom 𝑈) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))) |
| 31 | 26, 28, 30 | 3bitr4g 314 |
1
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ 𝐹 ∈ (𝑆 RingHom 𝑈))) |