MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resrhm2b Structured version   Visualization version   GIF version

Theorem resrhm2b 20517
Description: Restriction of the codomain of a (ring) homomorphism. resghm2b 19146 analog. (Contributed by SN, 7-Feb-2025.)
Hypothesis
Ref Expression
resrhm2b.u 𝑈 = (𝑇s 𝑋)
Assertion
Ref Expression
resrhm2b ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ 𝐹 ∈ (𝑆 RingHom 𝑈)))

Proof of Theorem resrhm2b
StepHypRef Expression
1 subrgsubg 20492 . . . . . 6 (𝑋 ∈ (SubRing‘𝑇) → 𝑋 ∈ (SubGrp‘𝑇))
2 resrhm2b.u . . . . . . 7 𝑈 = (𝑇s 𝑋)
32resghm2b 19146 . . . . . 6 ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈)))
41, 3sylan 580 . . . . 5 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈)))
5 eqid 2731 . . . . . . . 8 (mulGrp‘𝑇) = (mulGrp‘𝑇)
65subrgsubm 20500 . . . . . . 7 (𝑋 ∈ (SubRing‘𝑇) → 𝑋 ∈ (SubMnd‘(mulGrp‘𝑇)))
7 eqid 2731 . . . . . . . 8 ((mulGrp‘𝑇) ↾s 𝑋) = ((mulGrp‘𝑇) ↾s 𝑋)
87resmhm2b 18730 . . . . . . 7 ((𝑋 ∈ (SubMnd‘(mulGrp‘𝑇)) ∧ ran 𝐹𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋))))
96, 8sylan 580 . . . . . 6 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋))))
10 subrgrcl 20491 . . . . . . . . . 10 (𝑋 ∈ (SubRing‘𝑇) → 𝑇 ∈ Ring)
112, 5mgpress 20068 . . . . . . . . . 10 ((𝑇 ∈ Ring ∧ 𝑋 ∈ (SubRing‘𝑇)) → ((mulGrp‘𝑇) ↾s 𝑋) = (mulGrp‘𝑈))
1210, 11mpancom 688 . . . . . . . . 9 (𝑋 ∈ (SubRing‘𝑇) → ((mulGrp‘𝑇) ↾s 𝑋) = (mulGrp‘𝑈))
1312adantr 480 . . . . . . . 8 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((mulGrp‘𝑇) ↾s 𝑋) = (mulGrp‘𝑈))
1413oveq2d 7362 . . . . . . 7 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋)) = ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))
1514eleq2d 2817 . . . . . 6 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))
169, 15bitrd 279 . . . . 5 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))
174, 16anbi12d 632 . . . 4 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))))
1817anbi2d 630 . . 3 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))) ↔ (𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))))
1910adantr 480 . . . . 5 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → 𝑇 ∈ Ring)
2019biantrud 531 . . . 4 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝑆 ∈ Ring ↔ (𝑆 ∈ Ring ∧ 𝑇 ∈ Ring)))
2120anbi1d 631 . . 3 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))) ↔ ((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))))))
222subrgring 20489 . . . . . 6 (𝑋 ∈ (SubRing‘𝑇) → 𝑈 ∈ Ring)
2322adantr 480 . . . . 5 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → 𝑈 ∈ Ring)
2423biantrud 531 . . . 4 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝑆 ∈ Ring ↔ (𝑆 ∈ Ring ∧ 𝑈 ∈ Ring)))
2524anbi1d 631 . . 3 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))))
2618, 21, 253bitr3d 309 . 2 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))))
27 eqid 2731 . . 3 (mulGrp‘𝑆) = (mulGrp‘𝑆)
2827, 5isrhm 20396 . 2 (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ ((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))))
29 eqid 2731 . . 3 (mulGrp‘𝑈) = (mulGrp‘𝑈)
3027, 29isrhm 20396 . 2 (𝐹 ∈ (𝑆 RingHom 𝑈) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))))
3126, 28, 303bitr4g 314 1 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ 𝐹 ∈ (𝑆 RingHom 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wss 3897  ran crn 5615  cfv 6481  (class class class)co 7346  s cress 17141   MndHom cmhm 18689  SubMndcsubmnd 18690  SubGrpcsubg 19033   GrpHom cghm 19124  mulGrpcmgp 20058  Ringcrg 20151   RingHom crh 20387  SubRingcsubrg 20484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-subg 19036  df-ghm 19125  df-mgp 20059  df-ur 20100  df-ring 20153  df-rhm 20390  df-subrg 20485
This theorem is referenced by:  imadrhmcl  20712  idomsubr  33275  algextdeglem4  33733  selvcllem4  42684
  Copyright terms: Public domain W3C validator