MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resrhm2b Structured version   Visualization version   GIF version

Theorem resrhm2b 20619
Description: Restriction of the codomain of a (ring) homomorphism. resghm2b 19265 analog. (Contributed by SN, 7-Feb-2025.)
Hypothesis
Ref Expression
resrhm2b.u 𝑈 = (𝑇s 𝑋)
Assertion
Ref Expression
resrhm2b ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ 𝐹 ∈ (𝑆 RingHom 𝑈)))

Proof of Theorem resrhm2b
StepHypRef Expression
1 subrgsubg 20594 . . . . . 6 (𝑋 ∈ (SubRing‘𝑇) → 𝑋 ∈ (SubGrp‘𝑇))
2 resrhm2b.u . . . . . . 7 𝑈 = (𝑇s 𝑋)
32resghm2b 19265 . . . . . 6 ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈)))
41, 3sylan 580 . . . . 5 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈)))
5 eqid 2735 . . . . . . . 8 (mulGrp‘𝑇) = (mulGrp‘𝑇)
65subrgsubm 20602 . . . . . . 7 (𝑋 ∈ (SubRing‘𝑇) → 𝑋 ∈ (SubMnd‘(mulGrp‘𝑇)))
7 eqid 2735 . . . . . . . 8 ((mulGrp‘𝑇) ↾s 𝑋) = ((mulGrp‘𝑇) ↾s 𝑋)
87resmhm2b 18848 . . . . . . 7 ((𝑋 ∈ (SubMnd‘(mulGrp‘𝑇)) ∧ ran 𝐹𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋))))
96, 8sylan 580 . . . . . 6 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋))))
10 subrgrcl 20593 . . . . . . . . . 10 (𝑋 ∈ (SubRing‘𝑇) → 𝑇 ∈ Ring)
112, 5mgpress 20167 . . . . . . . . . 10 ((𝑇 ∈ Ring ∧ 𝑋 ∈ (SubRing‘𝑇)) → ((mulGrp‘𝑇) ↾s 𝑋) = (mulGrp‘𝑈))
1210, 11mpancom 688 . . . . . . . . 9 (𝑋 ∈ (SubRing‘𝑇) → ((mulGrp‘𝑇) ↾s 𝑋) = (mulGrp‘𝑈))
1312adantr 480 . . . . . . . 8 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((mulGrp‘𝑇) ↾s 𝑋) = (mulGrp‘𝑈))
1413oveq2d 7447 . . . . . . 7 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋)) = ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))
1514eleq2d 2825 . . . . . 6 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))
169, 15bitrd 279 . . . . 5 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))
174, 16anbi12d 632 . . . 4 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))))
1817anbi2d 630 . . 3 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))) ↔ (𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))))
1910adantr 480 . . . . 5 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → 𝑇 ∈ Ring)
2019biantrud 531 . . . 4 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝑆 ∈ Ring ↔ (𝑆 ∈ Ring ∧ 𝑇 ∈ Ring)))
2120anbi1d 631 . . 3 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))) ↔ ((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))))))
222subrgring 20591 . . . . . 6 (𝑋 ∈ (SubRing‘𝑇) → 𝑈 ∈ Ring)
2322adantr 480 . . . . 5 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → 𝑈 ∈ Ring)
2423biantrud 531 . . . 4 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝑆 ∈ Ring ↔ (𝑆 ∈ Ring ∧ 𝑈 ∈ Ring)))
2524anbi1d 631 . . 3 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))))
2618, 21, 253bitr3d 309 . 2 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))))
27 eqid 2735 . . 3 (mulGrp‘𝑆) = (mulGrp‘𝑆)
2827, 5isrhm 20495 . 2 (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ ((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))))
29 eqid 2735 . . 3 (mulGrp‘𝑈) = (mulGrp‘𝑈)
3027, 29isrhm 20495 . 2 (𝐹 ∈ (𝑆 RingHom 𝑈) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))))
3126, 28, 303bitr4g 314 1 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ 𝐹 ∈ (𝑆 RingHom 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wss 3963  ran crn 5690  cfv 6563  (class class class)co 7431  s cress 17274   MndHom cmhm 18807  SubMndcsubmnd 18808  SubGrpcsubg 19151   GrpHom cghm 19243  mulGrpcmgp 20152  Ringcrg 20251   RingHom crh 20486  SubRingcsubrg 20586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-subg 19154  df-ghm 19244  df-mgp 20153  df-ur 20200  df-ring 20253  df-rhm 20489  df-subrg 20587
This theorem is referenced by:  imadrhmcl  20815  idomsubr  33291  algextdeglem4  33726  selvcllem4  42568
  Copyright terms: Public domain W3C validator