Step | Hyp | Ref
| Expression |
1 | | subrgsubg 20325 |
. . . . . 6
β’ (π β (SubRingβπ) β π β (SubGrpβπ)) |
2 | | resrhm2b.u |
. . . . . . 7
β’ π = (π βΎs π) |
3 | 2 | resghm2b 19110 |
. . . . . 6
β’ ((π β (SubGrpβπ) β§ ran πΉ β π) β (πΉ β (π GrpHom π) β πΉ β (π GrpHom π))) |
4 | 1, 3 | sylan 581 |
. . . . 5
β’ ((π β (SubRingβπ) β§ ran πΉ β π) β (πΉ β (π GrpHom π) β πΉ β (π GrpHom π))) |
5 | | eqid 2733 |
. . . . . . . 8
β’
(mulGrpβπ) =
(mulGrpβπ) |
6 | 5 | subrgsubm 20332 |
. . . . . . 7
β’ (π β (SubRingβπ) β π β (SubMndβ(mulGrpβπ))) |
7 | | eqid 2733 |
. . . . . . . 8
β’
((mulGrpβπ)
βΎs π) =
((mulGrpβπ)
βΎs π) |
8 | 7 | resmhm2b 18703 |
. . . . . . 7
β’ ((π β
(SubMndβ(mulGrpβπ)) β§ ran πΉ β π) β (πΉ β ((mulGrpβπ) MndHom (mulGrpβπ)) β πΉ β ((mulGrpβπ) MndHom ((mulGrpβπ) βΎs π)))) |
9 | 6, 8 | sylan 581 |
. . . . . 6
β’ ((π β (SubRingβπ) β§ ran πΉ β π) β (πΉ β ((mulGrpβπ) MndHom (mulGrpβπ)) β πΉ β ((mulGrpβπ) MndHom ((mulGrpβπ) βΎs π)))) |
10 | | subrgrcl 20324 |
. . . . . . . . . 10
β’ (π β (SubRingβπ) β π β Ring) |
11 | 2, 5 | mgpress 20002 |
. . . . . . . . . 10
β’ ((π β Ring β§ π β (SubRingβπ)) β ((mulGrpβπ) βΎs π) = (mulGrpβπ)) |
12 | 10, 11 | mpancom 687 |
. . . . . . . . 9
β’ (π β (SubRingβπ) β ((mulGrpβπ) βΎs π) = (mulGrpβπ)) |
13 | 12 | adantr 482 |
. . . . . . . 8
β’ ((π β (SubRingβπ) β§ ran πΉ β π) β ((mulGrpβπ) βΎs π) = (mulGrpβπ)) |
14 | 13 | oveq2d 7425 |
. . . . . . 7
β’ ((π β (SubRingβπ) β§ ran πΉ β π) β ((mulGrpβπ) MndHom ((mulGrpβπ) βΎs π)) = ((mulGrpβπ) MndHom (mulGrpβπ))) |
15 | 14 | eleq2d 2820 |
. . . . . 6
β’ ((π β (SubRingβπ) β§ ran πΉ β π) β (πΉ β ((mulGrpβπ) MndHom ((mulGrpβπ) βΎs π)) β πΉ β ((mulGrpβπ) MndHom (mulGrpβπ)))) |
16 | 9, 15 | bitrd 279 |
. . . . 5
β’ ((π β (SubRingβπ) β§ ran πΉ β π) β (πΉ β ((mulGrpβπ) MndHom (mulGrpβπ)) β πΉ β ((mulGrpβπ) MndHom (mulGrpβπ)))) |
17 | 4, 16 | anbi12d 632 |
. . . 4
β’ ((π β (SubRingβπ) β§ ran πΉ β π) β ((πΉ β (π GrpHom π) β§ πΉ β ((mulGrpβπ) MndHom (mulGrpβπ))) β (πΉ β (π GrpHom π) β§ πΉ β ((mulGrpβπ) MndHom (mulGrpβπ))))) |
18 | 17 | anbi2d 630 |
. . 3
β’ ((π β (SubRingβπ) β§ ran πΉ β π) β ((π β Ring β§ (πΉ β (π GrpHom π) β§ πΉ β ((mulGrpβπ) MndHom (mulGrpβπ)))) β (π β Ring β§ (πΉ β (π GrpHom π) β§ πΉ β ((mulGrpβπ) MndHom (mulGrpβπ)))))) |
19 | 10 | adantr 482 |
. . . . 5
β’ ((π β (SubRingβπ) β§ ran πΉ β π) β π β Ring) |
20 | 19 | biantrud 533 |
. . . 4
β’ ((π β (SubRingβπ) β§ ran πΉ β π) β (π β Ring β (π β Ring β§ π β Ring))) |
21 | 20 | anbi1d 631 |
. . 3
β’ ((π β (SubRingβπ) β§ ran πΉ β π) β ((π β Ring β§ (πΉ β (π GrpHom π) β§ πΉ β ((mulGrpβπ) MndHom (mulGrpβπ)))) β ((π β Ring β§ π β Ring) β§ (πΉ β (π GrpHom π) β§ πΉ β ((mulGrpβπ) MndHom (mulGrpβπ)))))) |
22 | 2 | subrgring 20322 |
. . . . . 6
β’ (π β (SubRingβπ) β π β Ring) |
23 | 22 | adantr 482 |
. . . . 5
β’ ((π β (SubRingβπ) β§ ran πΉ β π) β π β Ring) |
24 | 23 | biantrud 533 |
. . . 4
β’ ((π β (SubRingβπ) β§ ran πΉ β π) β (π β Ring β (π β Ring β§ π β Ring))) |
25 | 24 | anbi1d 631 |
. . 3
β’ ((π β (SubRingβπ) β§ ran πΉ β π) β ((π β Ring β§ (πΉ β (π GrpHom π) β§ πΉ β ((mulGrpβπ) MndHom (mulGrpβπ)))) β ((π β Ring β§ π β Ring) β§ (πΉ β (π GrpHom π) β§ πΉ β ((mulGrpβπ) MndHom (mulGrpβπ)))))) |
26 | 18, 21, 25 | 3bitr3d 309 |
. 2
β’ ((π β (SubRingβπ) β§ ran πΉ β π) β (((π β Ring β§ π β Ring) β§ (πΉ β (π GrpHom π) β§ πΉ β ((mulGrpβπ) MndHom (mulGrpβπ)))) β ((π β Ring β§ π β Ring) β§ (πΉ β (π GrpHom π) β§ πΉ β ((mulGrpβπ) MndHom (mulGrpβπ)))))) |
27 | | eqid 2733 |
. . 3
β’
(mulGrpβπ) =
(mulGrpβπ) |
28 | 27, 5 | isrhm 20257 |
. 2
β’ (πΉ β (π RingHom π) β ((π β Ring β§ π β Ring) β§ (πΉ β (π GrpHom π) β§ πΉ β ((mulGrpβπ) MndHom (mulGrpβπ))))) |
29 | | eqid 2733 |
. . 3
β’
(mulGrpβπ) =
(mulGrpβπ) |
30 | 27, 29 | isrhm 20257 |
. 2
β’ (πΉ β (π RingHom π) β ((π β Ring β§ π β Ring) β§ (πΉ β (π GrpHom π) β§ πΉ β ((mulGrpβπ) MndHom (mulGrpβπ))))) |
31 | 26, 28, 30 | 3bitr4g 314 |
1
β’ ((π β (SubRingβπ) β§ ran πΉ β π) β (πΉ β (π RingHom π) β πΉ β (π RingHom π))) |