Proof of Theorem resrhm2b
Step | Hyp | Ref
| Expression |
1 | | subrgsubg 20468 |
. . . . . 6
⊢ (𝑋 ∈ (SubRing‘𝑇) → 𝑋 ∈ (SubGrp‘𝑇)) |
2 | | resrhm2b.u |
. . . . . . 7
⊢ 𝑈 = (𝑇 ↾s 𝑋) |
3 | 2 | resghm2b 19149 |
. . . . . 6
⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈))) |
4 | 1, 3 | sylan 579 |
. . . . 5
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈))) |
5 | | eqid 2731 |
. . . . . . . 8
⊢
(mulGrp‘𝑇) =
(mulGrp‘𝑇) |
6 | 5 | subrgsubm 20476 |
. . . . . . 7
⊢ (𝑋 ∈ (SubRing‘𝑇) → 𝑋 ∈ (SubMnd‘(mulGrp‘𝑇))) |
7 | | eqid 2731 |
. . . . . . . 8
⊢
((mulGrp‘𝑇)
↾s 𝑋) =
((mulGrp‘𝑇)
↾s 𝑋) |
8 | 7 | resmhm2b 18740 |
. . . . . . 7
⊢ ((𝑋 ∈
(SubMnd‘(mulGrp‘𝑇)) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋)))) |
9 | 6, 8 | sylan 579 |
. . . . . 6
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋)))) |
10 | | subrgrcl 20467 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (SubRing‘𝑇) → 𝑇 ∈ Ring) |
11 | 2, 5 | mgpress 20044 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ Ring ∧ 𝑋 ∈ (SubRing‘𝑇)) → ((mulGrp‘𝑇) ↾s 𝑋) = (mulGrp‘𝑈)) |
12 | 10, 11 | mpancom 685 |
. . . . . . . . 9
⊢ (𝑋 ∈ (SubRing‘𝑇) → ((mulGrp‘𝑇) ↾s 𝑋) = (mulGrp‘𝑈)) |
13 | 12 | adantr 480 |
. . . . . . . 8
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → ((mulGrp‘𝑇) ↾s 𝑋) = (mulGrp‘𝑈)) |
14 | 13 | oveq2d 7428 |
. . . . . . 7
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋)) = ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))) |
15 | 14 | eleq2d 2818 |
. . . . . 6
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))) |
16 | 9, 15 | bitrd 279 |
. . . . 5
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))) |
17 | 4, 16 | anbi12d 630 |
. . . 4
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))) |
18 | 17 | anbi2d 628 |
. . 3
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → ((𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))) ↔ (𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))))) |
19 | 10 | adantr 480 |
. . . . 5
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → 𝑇 ∈ Ring) |
20 | 19 | biantrud 531 |
. . . 4
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝑆 ∈ Ring ↔ (𝑆 ∈ Ring ∧ 𝑇 ∈ Ring))) |
21 | 20 | anbi1d 629 |
. . 3
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → ((𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))) ↔ ((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))))) |
22 | 2 | subrgring 20465 |
. . . . . 6
⊢ (𝑋 ∈ (SubRing‘𝑇) → 𝑈 ∈ Ring) |
23 | 22 | adantr 480 |
. . . . 5
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → 𝑈 ∈ Ring) |
24 | 23 | biantrud 531 |
. . . 4
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝑆 ∈ Ring ↔ (𝑆 ∈ Ring ∧ 𝑈 ∈ Ring))) |
25 | 24 | anbi1d 629 |
. . 3
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → ((𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))))) |
26 | 18, 21, 25 | 3bitr3d 309 |
. 2
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))))) |
27 | | eqid 2731 |
. . 3
⊢
(mulGrp‘𝑆) =
(mulGrp‘𝑆) |
28 | 27, 5 | isrhm 20370 |
. 2
⊢ (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ ((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))))) |
29 | | eqid 2731 |
. . 3
⊢
(mulGrp‘𝑈) =
(mulGrp‘𝑈) |
30 | 27, 29 | isrhm 20370 |
. 2
⊢ (𝐹 ∈ (𝑆 RingHom 𝑈) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))) |
31 | 26, 28, 30 | 3bitr4g 314 |
1
⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ 𝐹 ∈ (𝑆 RingHom 𝑈))) |