MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdval2 Structured version   Visualization version   GIF version

Theorem swrdval2 14008
Description: Value of the subword extractor in its intended domain. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 2-May-2020.)
Assertion
Ref Expression
swrdval2 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))))
Distinct variable groups:   𝑥,𝑆   𝑥,𝐹   𝑥,𝐿   𝑥,𝐴

Proof of Theorem swrdval2
StepHypRef Expression
1 simp1 1133 . . 3 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝑆 ∈ Word 𝐴)
2 elfzelz 12911 . . . 4 (𝐹 ∈ (0...𝐿) → 𝐹 ∈ ℤ)
323ad2ant2 1131 . . 3 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝐹 ∈ ℤ)
4 elfzelz 12911 . . . 4 (𝐿 ∈ (0...(♯‘𝑆)) → 𝐿 ∈ ℤ)
543ad2ant3 1132 . . 3 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ ℤ)
6 swrdval 14005 . . 3 ((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅))
71, 3, 5, 6syl3anc 1368 . 2 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅))
8 elfzuz 12907 . . . . . . 7 (𝐹 ∈ (0...𝐿) → 𝐹 ∈ (ℤ‘0))
983ad2ant2 1131 . . . . . 6 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝐹 ∈ (ℤ‘0))
10 fzoss1 13068 . . . . . 6 (𝐹 ∈ (ℤ‘0) → (𝐹..^𝐿) ⊆ (0..^𝐿))
119, 10syl 17 . . . . 5 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝐹..^𝐿) ⊆ (0..^𝐿))
12 elfzuz3 12908 . . . . . . 7 (𝐿 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ𝐿))
13123ad2ant3 1132 . . . . . 6 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘𝑆) ∈ (ℤ𝐿))
14 fzoss2 13069 . . . . . 6 ((♯‘𝑆) ∈ (ℤ𝐿) → (0..^𝐿) ⊆ (0..^(♯‘𝑆)))
1513, 14syl 17 . . . . 5 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (0..^𝐿) ⊆ (0..^(♯‘𝑆)))
1611, 15sstrd 3963 . . . 4 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝐹..^𝐿) ⊆ (0..^(♯‘𝑆)))
17 wrddm 13873 . . . . 5 (𝑆 ∈ Word 𝐴 → dom 𝑆 = (0..^(♯‘𝑆)))
18173ad2ant1 1130 . . . 4 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → dom 𝑆 = (0..^(♯‘𝑆)))
1916, 18sseqtrrd 3994 . . 3 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝐹..^𝐿) ⊆ dom 𝑆)
2019iftrued 4458 . 2 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))))
217, 20eqtrd 2859 1 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2115  wss 3919  c0 4276  ifcif 4450  cop 4556  cmpt 5132  dom cdm 5542  cfv 6343  (class class class)co 7149  0cc0 10535   + caddc 10538  cmin 10868  cz 11978  cuz 12240  ...cfz 12894  ..^cfzo 13037  chash 13695  Word cword 13866   substr csubstr 14002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895  df-fzo 13038  df-hash 13696  df-word 13867  df-substr 14003
This theorem is referenced by:  swrdlen  14009  swrdfv  14010  swrdwrdsymb  14024  pfxmpt  14040  swrdswrd  14067  swrdrn2  30639  swrdrn3  30640  cshw1s2  30645
  Copyright terms: Public domain W3C validator