Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendocoval | Structured version Visualization version GIF version |
Description: Value of composition of endomorphisms in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
Ref | Expression |
---|---|
tendof.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendof.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendof.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendocoval | ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) → ((𝑈 ∘ 𝑉)‘𝐹) = (𝑈‘(𝑉‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) | |
2 | simp2r 1199 | . . 3 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) → 𝑉 ∈ 𝐸) | |
3 | tendof.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | tendof.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | tendof.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
6 | 3, 4, 5 | tendof 38784 | . . 3 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ 𝑉 ∈ 𝐸) → 𝑉:𝑇⟶𝑇) |
7 | 1, 2, 6 | syl2anc 584 | . 2 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) → 𝑉:𝑇⟶𝑇) |
8 | simp3 1137 | . 2 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝑇) | |
9 | fvco3 6876 | . 2 ⊢ ((𝑉:𝑇⟶𝑇 ∧ 𝐹 ∈ 𝑇) → ((𝑈 ∘ 𝑉)‘𝐹) = (𝑈‘(𝑉‘𝐹))) | |
10 | 7, 8, 9 | syl2anc 584 | 1 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) → ((𝑈 ∘ 𝑉)‘𝐹) = (𝑈‘(𝑉‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∘ ccom 5594 ⟶wf 6433 ‘cfv 6437 LHypclh 38005 LTrncltrn 38122 TEndoctendo 38773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-ov 7287 df-oprab 7288 df-mpo 7289 df-map 8626 df-tendo 38776 |
This theorem is referenced by: tendococl 38793 tendodi1 38805 tendodi2 38806 tendo0mul 38847 tendo0mulr 38848 cdleml3N 38999 cdleml7 39003 dvhlveclem 39129 dih1dimatlem0 39349 |
Copyright terms: Public domain | W3C validator |