| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendocoval | Structured version Visualization version GIF version | ||
| Description: Value of composition of endomorphisms in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendof.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendof.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendof.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| tendocoval | ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) → ((𝑈 ∘ 𝑉)‘𝐹) = (𝑈‘(𝑉‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) | |
| 2 | simp2r 1201 | . . 3 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) → 𝑉 ∈ 𝐸) | |
| 3 | tendof.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | tendof.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | tendof.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 6 | 3, 4, 5 | tendof 40861 | . . 3 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ 𝑉 ∈ 𝐸) → 𝑉:𝑇⟶𝑇) |
| 7 | 1, 2, 6 | syl2anc 584 | . 2 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) → 𝑉:𝑇⟶𝑇) |
| 8 | simp3 1138 | . 2 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝑇) | |
| 9 | fvco3 6921 | . 2 ⊢ ((𝑉:𝑇⟶𝑇 ∧ 𝐹 ∈ 𝑇) → ((𝑈 ∘ 𝑉)‘𝐹) = (𝑈‘(𝑉‘𝐹))) | |
| 10 | 7, 8, 9 | syl2anc 584 | 1 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) → ((𝑈 ∘ 𝑉)‘𝐹) = (𝑈‘(𝑉‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∘ ccom 5618 ⟶wf 6477 ‘cfv 6481 LHypclh 40082 LTrncltrn 40199 TEndoctendo 40850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-tendo 40853 |
| This theorem is referenced by: tendococl 40870 tendodi1 40882 tendodi2 40883 tendo0mul 40924 tendo0mulr 40925 cdleml3N 41076 cdleml7 41080 dvhlveclem 41206 dih1dimatlem0 41426 |
| Copyright terms: Public domain | W3C validator |