Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendocoval Structured version   Visualization version   GIF version

Theorem tendocoval 38707
Description: Value of composition of endomorphisms in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendof.h 𝐻 = (LHyp‘𝐾)
tendof.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendof.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendocoval (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑈𝑉)‘𝐹) = (𝑈‘(𝑉𝐹)))

Proof of Theorem tendocoval
StepHypRef Expression
1 simp1 1134 . . 3 (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝐾𝑋𝑊𝐻))
2 simp2r 1198 . . 3 (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝑉𝐸)
3 tendof.h . . . 4 𝐻 = (LHyp‘𝐾)
4 tendof.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 tendof.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
63, 4, 5tendof 38704 . . 3 (((𝐾𝑋𝑊𝐻) ∧ 𝑉𝐸) → 𝑉:𝑇𝑇)
71, 2, 6syl2anc 583 . 2 (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝑉:𝑇𝑇)
8 simp3 1136 . 2 (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝐹𝑇)
9 fvco3 6849 . 2 ((𝑉:𝑇𝑇𝐹𝑇) → ((𝑈𝑉)‘𝐹) = (𝑈‘(𝑉𝐹)))
107, 8, 9syl2anc 583 1 (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑈𝑉)‘𝐹) = (𝑈‘(𝑉𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  ccom 5584  wf 6414  cfv 6418  LHypclh 37925  LTrncltrn 38042  TEndoctendo 38693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-tendo 38696
This theorem is referenced by:  tendococl  38713  tendodi1  38725  tendodi2  38726  tendo0mul  38767  tendo0mulr  38768  cdleml3N  38919  cdleml7  38923  dvhlveclem  39049  dih1dimatlem0  39269
  Copyright terms: Public domain W3C validator