Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendocoval Structured version   Visualization version   GIF version

Theorem tendocoval 37295
Description: Value of composition of endomorphisms in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendof.h 𝐻 = (LHyp‘𝐾)
tendof.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendof.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendocoval (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑈𝑉)‘𝐹) = (𝑈‘(𝑉𝐹)))

Proof of Theorem tendocoval
StepHypRef Expression
1 simp1 1116 . . 3 (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝐾𝑋𝑊𝐻))
2 simp2r 1180 . . 3 (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝑉𝐸)
3 tendof.h . . . 4 𝐻 = (LHyp‘𝐾)
4 tendof.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 tendof.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
63, 4, 5tendof 37292 . . 3 (((𝐾𝑋𝑊𝐻) ∧ 𝑉𝐸) → 𝑉:𝑇𝑇)
71, 2, 6syl2anc 576 . 2 (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝑉:𝑇𝑇)
8 simp3 1118 . 2 (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝐹𝑇)
9 fvco3 6582 . 2 ((𝑉:𝑇𝑇𝐹𝑇) → ((𝑈𝑉)‘𝐹) = (𝑈‘(𝑉𝐹)))
107, 8, 9syl2anc 576 1 (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑈𝑉)‘𝐹) = (𝑈‘(𝑉𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2048  ccom 5404  wf 6178  cfv 6182  LHypclh 36513  LTrncltrn 36630  TEndoctendo 37281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-oprab 6974  df-mpo 6975  df-map 8200  df-tendo 37284
This theorem is referenced by:  tendococl  37301  tendodi1  37313  tendodi2  37314  tendo0mul  37355  tendo0mulr  37356  cdleml3N  37507  cdleml7  37511  dvhlveclem  37637  dih1dimatlem0  37857
  Copyright terms: Public domain W3C validator