![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendocl | Structured version Visualization version GIF version |
Description: Closure of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
Ref | Expression |
---|---|
tendof.h | β’ π» = (LHypβπΎ) |
tendof.t | β’ π = ((LTrnβπΎ)βπ) |
tendof.e | β’ πΈ = ((TEndoβπΎ)βπ) |
Ref | Expression |
---|---|
tendocl | β’ (((πΎ β π β§ π β π») β§ π β πΈ β§ πΉ β π) β (πβπΉ) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendof.h | . . . 4 β’ π» = (LHypβπΎ) | |
2 | tendof.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
3 | tendof.e | . . . 4 β’ πΈ = ((TEndoβπΎ)βπ) | |
4 | 1, 2, 3 | tendof 39937 | . . 3 β’ (((πΎ β π β§ π β π») β§ π β πΈ) β π:πβΆπ) |
5 | 4 | 3adant3 1132 | . 2 β’ (((πΎ β π β§ π β π») β§ π β πΈ β§ πΉ β π) β π:πβΆπ) |
6 | simp3 1138 | . 2 β’ (((πΎ β π β§ π β π») β§ π β πΈ β§ πΉ β π) β πΉ β π) | |
7 | 5, 6 | ffvelcdmd 7087 | 1 β’ (((πΎ β π β§ π β π») β§ π β πΈ β§ πΉ β π) β (πβπΉ) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βΆwf 6539 βcfv 6543 LHypclh 39158 LTrncltrn 39275 TEndoctendo 39926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-map 8824 df-tendo 39929 |
This theorem is referenced by: tendoco2 39942 tendococl 39946 tendoid 39947 tendoplcl2 39952 tendopltp 39954 tendoplcl 39955 tendoplcom 39956 tendodi1 39958 tendodi2 39959 tendo0pl 39965 tendoicl 39970 tendoipl 39971 cdlemi1 39992 cdlemi2 39993 cdlemi 39994 cdlemj2 39996 tendo0mul 40000 tendoconid 40003 tendotr 40004 cdleml1N 40150 cdleml2N 40151 cdleml6 40155 dva1dim 40159 tendospcl 40192 tendocnv 40195 tendospcanN 40197 dvalveclem 40199 dialss 40220 dvhvscacl 40277 dvhlveclem 40282 dib1dim 40339 dib1dim2 40342 diblss 40344 dicssdvh 40360 diclspsn 40368 cdlemn6 40376 dihopelvalcpre 40422 dih1 40460 dihglbcpreN 40474 dih1dimatlem0 40502 dih1dimatlem 40503 |
Copyright terms: Public domain | W3C validator |