Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendocl Structured version   Visualization version   GIF version

Theorem tendocl 39576
Description: Closure of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendof.h 𝐻 = (LHyp‘𝐾)
tendof.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendof.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendocl (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)

Proof of Theorem tendocl
StepHypRef Expression
1 tendof.h . . . 4 𝐻 = (LHyp‘𝐾)
2 tendof.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 tendof.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
41, 2, 3tendof 39572 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸) → 𝑆:𝑇𝑇)
543adant3 1133 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝑆:𝑇𝑇)
6 simp3 1139 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝐹𝑇)
75, 6ffvelcdmd 7083 1 (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wf 6536  cfv 6540  LHypclh 38793  LTrncltrn 38910  TEndoctendo 39561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7407  df-oprab 7408  df-mpo 7409  df-map 8818  df-tendo 39564
This theorem is referenced by:  tendoco2  39577  tendococl  39581  tendoid  39582  tendoplcl2  39587  tendopltp  39589  tendoplcl  39590  tendoplcom  39591  tendodi1  39593  tendodi2  39594  tendo0pl  39600  tendoicl  39605  tendoipl  39606  cdlemi1  39627  cdlemi2  39628  cdlemi  39629  cdlemj2  39631  tendo0mul  39635  tendoconid  39638  tendotr  39639  cdleml1N  39785  cdleml2N  39786  cdleml6  39790  dva1dim  39794  tendospcl  39827  tendocnv  39830  tendospcanN  39832  dvalveclem  39834  dialss  39855  dvhvscacl  39912  dvhlveclem  39917  dib1dim  39974  dib1dim2  39977  diblss  39979  dicssdvh  39995  diclspsn  40003  cdlemn6  40011  dihopelvalcpre  40057  dih1  40095  dihglbcpreN  40109  dih1dimatlem0  40137  dih1dimatlem  40138
  Copyright terms: Public domain W3C validator