| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendocl | Structured version Visualization version GIF version | ||
| Description: Closure of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendof.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendof.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendof.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| tendocl | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑆‘𝐹) ∈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendof.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | tendof.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | tendof.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 4 | 1, 2, 3 | tendof 40764 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝑆:𝑇⟶𝑇) |
| 5 | 4 | 3adant3 1132 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → 𝑆:𝑇⟶𝑇) |
| 6 | simp3 1138 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝑇) | |
| 7 | 5, 6 | ffvelcdmd 7060 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑆‘𝐹) ∈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⟶wf 6510 ‘cfv 6514 LHypclh 39985 LTrncltrn 40102 TEndoctendo 40753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-tendo 40756 |
| This theorem is referenced by: tendoco2 40769 tendococl 40773 tendoid 40774 tendoplcl2 40779 tendopltp 40781 tendoplcl 40782 tendoplcom 40783 tendodi1 40785 tendodi2 40786 tendo0pl 40792 tendoicl 40797 tendoipl 40798 cdlemi1 40819 cdlemi2 40820 cdlemi 40821 cdlemj2 40823 tendo0mul 40827 tendoconid 40830 tendotr 40831 cdleml1N 40977 cdleml2N 40978 cdleml6 40982 dva1dim 40986 tendospcl 41019 tendocnv 41022 tendospcanN 41024 dvalveclem 41026 dialss 41047 dvhvscacl 41104 dvhlveclem 41109 dib1dim 41166 dib1dim2 41169 diblss 41171 dicssdvh 41187 diclspsn 41195 cdlemn6 41203 dihopelvalcpre 41249 dih1 41287 dihglbcpreN 41301 dih1dimatlem0 41329 dih1dimatlem 41330 |
| Copyright terms: Public domain | W3C validator |