![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendocl | Structured version Visualization version GIF version |
Description: Closure of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
Ref | Expression |
---|---|
tendof.h | β’ π» = (LHypβπΎ) |
tendof.t | β’ π = ((LTrnβπΎ)βπ) |
tendof.e | β’ πΈ = ((TEndoβπΎ)βπ) |
Ref | Expression |
---|---|
tendocl | β’ (((πΎ β π β§ π β π») β§ π β πΈ β§ πΉ β π) β (πβπΉ) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendof.h | . . . 4 β’ π» = (LHypβπΎ) | |
2 | tendof.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
3 | tendof.e | . . . 4 β’ πΈ = ((TEndoβπΎ)βπ) | |
4 | 1, 2, 3 | tendof 39634 | . . 3 β’ (((πΎ β π β§ π β π») β§ π β πΈ) β π:πβΆπ) |
5 | 4 | 3adant3 1133 | . 2 β’ (((πΎ β π β§ π β π») β§ π β πΈ β§ πΉ β π) β π:πβΆπ) |
6 | simp3 1139 | . 2 β’ (((πΎ β π β§ π β π») β§ π β πΈ β§ πΉ β π) β πΉ β π) | |
7 | 5, 6 | ffvelcdmd 7088 | 1 β’ (((πΎ β π β§ π β π») β§ π β πΈ β§ πΉ β π) β (πβπΉ) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 βΆwf 6540 βcfv 6544 LHypclh 38855 LTrncltrn 38972 TEndoctendo 39623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-map 8822 df-tendo 39626 |
This theorem is referenced by: tendoco2 39639 tendococl 39643 tendoid 39644 tendoplcl2 39649 tendopltp 39651 tendoplcl 39652 tendoplcom 39653 tendodi1 39655 tendodi2 39656 tendo0pl 39662 tendoicl 39667 tendoipl 39668 cdlemi1 39689 cdlemi2 39690 cdlemi 39691 cdlemj2 39693 tendo0mul 39697 tendoconid 39700 tendotr 39701 cdleml1N 39847 cdleml2N 39848 cdleml6 39852 dva1dim 39856 tendospcl 39889 tendocnv 39892 tendospcanN 39894 dvalveclem 39896 dialss 39917 dvhvscacl 39974 dvhlveclem 39979 dib1dim 40036 dib1dim2 40039 diblss 40041 dicssdvh 40057 diclspsn 40065 cdlemn6 40073 dihopelvalcpre 40119 dih1 40157 dihglbcpreN 40171 dih1dimatlem0 40199 dih1dimatlem 40200 |
Copyright terms: Public domain | W3C validator |