Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendocl Structured version   Visualization version   GIF version

Theorem tendocl 40876
Description: Closure of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendof.h 𝐻 = (LHyp‘𝐾)
tendof.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendof.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendocl (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)

Proof of Theorem tendocl
StepHypRef Expression
1 tendof.h . . . 4 𝐻 = (LHyp‘𝐾)
2 tendof.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 tendof.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
41, 2, 3tendof 40872 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸) → 𝑆:𝑇𝑇)
543adant3 1132 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝑆:𝑇𝑇)
6 simp3 1138 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝐹𝑇)
75, 6ffvelcdmd 7018 1 (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wf 6477  cfv 6481  LHypclh 40093  LTrncltrn 40210  TEndoctendo 40861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-tendo 40864
This theorem is referenced by:  tendoco2  40877  tendococl  40881  tendoid  40882  tendoplcl2  40887  tendopltp  40889  tendoplcl  40890  tendoplcom  40891  tendodi1  40893  tendodi2  40894  tendo0pl  40900  tendoicl  40905  tendoipl  40906  cdlemi1  40927  cdlemi2  40928  cdlemi  40929  cdlemj2  40931  tendo0mul  40935  tendoconid  40938  tendotr  40939  cdleml1N  41085  cdleml2N  41086  cdleml6  41090  dva1dim  41094  tendospcl  41127  tendocnv  41130  tendospcanN  41132  dvalveclem  41134  dialss  41155  dvhvscacl  41212  dvhlveclem  41217  dib1dim  41274  dib1dim2  41277  diblss  41279  dicssdvh  41295  diclspsn  41303  cdlemn6  41311  dihopelvalcpre  41357  dih1  41395  dihglbcpreN  41409  dih1dimatlem0  41437  dih1dimatlem  41438
  Copyright terms: Public domain W3C validator