| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendocl | Structured version Visualization version GIF version | ||
| Description: Closure of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendof.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendof.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendof.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| tendocl | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑆‘𝐹) ∈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendof.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | tendof.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | tendof.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 4 | 1, 2, 3 | tendof 40750 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝑆:𝑇⟶𝑇) |
| 5 | 4 | 3adant3 1132 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → 𝑆:𝑇⟶𝑇) |
| 6 | simp3 1138 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝑇) | |
| 7 | 5, 6 | ffvelcdmd 7039 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑆‘𝐹) ∈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⟶wf 6495 ‘cfv 6499 LHypclh 39971 LTrncltrn 40088 TEndoctendo 40739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-tendo 40742 |
| This theorem is referenced by: tendoco2 40755 tendococl 40759 tendoid 40760 tendoplcl2 40765 tendopltp 40767 tendoplcl 40768 tendoplcom 40769 tendodi1 40771 tendodi2 40772 tendo0pl 40778 tendoicl 40783 tendoipl 40784 cdlemi1 40805 cdlemi2 40806 cdlemi 40807 cdlemj2 40809 tendo0mul 40813 tendoconid 40816 tendotr 40817 cdleml1N 40963 cdleml2N 40964 cdleml6 40968 dva1dim 40972 tendospcl 41005 tendocnv 41008 tendospcanN 41010 dvalveclem 41012 dialss 41033 dvhvscacl 41090 dvhlveclem 41095 dib1dim 41152 dib1dim2 41155 diblss 41157 dicssdvh 41173 diclspsn 41181 cdlemn6 41189 dihopelvalcpre 41235 dih1 41273 dihglbcpreN 41287 dih1dimatlem0 41315 dih1dimatlem 41316 |
| Copyright terms: Public domain | W3C validator |