![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendocl | Structured version Visualization version GIF version |
Description: Closure of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
Ref | Expression |
---|---|
tendof.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendof.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendof.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendocl | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑆‘𝐹) ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendof.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | tendof.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | tendof.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | tendof 40462 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝑆:𝑇⟶𝑇) |
5 | 4 | 3adant3 1129 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → 𝑆:𝑇⟶𝑇) |
6 | simp3 1135 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝑇) | |
7 | 5, 6 | ffvelcdmd 7099 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑆‘𝐹) ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ⟶wf 6550 ‘cfv 6554 LHypclh 39683 LTrncltrn 39800 TEndoctendo 40451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-map 8857 df-tendo 40454 |
This theorem is referenced by: tendoco2 40467 tendococl 40471 tendoid 40472 tendoplcl2 40477 tendopltp 40479 tendoplcl 40480 tendoplcom 40481 tendodi1 40483 tendodi2 40484 tendo0pl 40490 tendoicl 40495 tendoipl 40496 cdlemi1 40517 cdlemi2 40518 cdlemi 40519 cdlemj2 40521 tendo0mul 40525 tendoconid 40528 tendotr 40529 cdleml1N 40675 cdleml2N 40676 cdleml6 40680 dva1dim 40684 tendospcl 40717 tendocnv 40720 tendospcanN 40722 dvalveclem 40724 dialss 40745 dvhvscacl 40802 dvhlveclem 40807 dib1dim 40864 dib1dim2 40867 diblss 40869 dicssdvh 40885 diclspsn 40893 cdlemn6 40901 dihopelvalcpre 40947 dih1 40985 dihglbcpreN 40999 dih1dimatlem0 41027 dih1dimatlem 41028 |
Copyright terms: Public domain | W3C validator |