Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendocl Structured version   Visualization version   GIF version

Theorem tendocl 40724
Description: Closure of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendof.h 𝐻 = (LHyp‘𝐾)
tendof.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendof.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendocl (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)

Proof of Theorem tendocl
StepHypRef Expression
1 tendof.h . . . 4 𝐻 = (LHyp‘𝐾)
2 tendof.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 tendof.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
41, 2, 3tendof 40720 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸) → 𝑆:𝑇𝑇)
543adant3 1132 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝑆:𝑇𝑇)
6 simp3 1138 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝐹𝑇)
75, 6ffvelcdmd 7119 1 (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wf 6569  cfv 6573  LHypclh 39941  LTrncltrn 40058  TEndoctendo 40709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-tendo 40712
This theorem is referenced by:  tendoco2  40725  tendococl  40729  tendoid  40730  tendoplcl2  40735  tendopltp  40737  tendoplcl  40738  tendoplcom  40739  tendodi1  40741  tendodi2  40742  tendo0pl  40748  tendoicl  40753  tendoipl  40754  cdlemi1  40775  cdlemi2  40776  cdlemi  40777  cdlemj2  40779  tendo0mul  40783  tendoconid  40786  tendotr  40787  cdleml1N  40933  cdleml2N  40934  cdleml6  40938  dva1dim  40942  tendospcl  40975  tendocnv  40978  tendospcanN  40980  dvalveclem  40982  dialss  41003  dvhvscacl  41060  dvhlveclem  41065  dib1dim  41122  dib1dim2  41125  diblss  41127  dicssdvh  41143  diclspsn  41151  cdlemn6  41159  dihopelvalcpre  41205  dih1  41243  dihglbcpreN  41257  dih1dimatlem0  41285  dih1dimatlem  41286
  Copyright terms: Public domain W3C validator