Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendocl Structured version   Visualization version   GIF version

Theorem tendocl 38708
Description: Closure of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendof.h 𝐻 = (LHyp‘𝐾)
tendof.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendof.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendocl (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)

Proof of Theorem tendocl
StepHypRef Expression
1 tendof.h . . . 4 𝐻 = (LHyp‘𝐾)
2 tendof.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 tendof.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
41, 2, 3tendof 38704 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸) → 𝑆:𝑇𝑇)
543adant3 1130 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝑆:𝑇𝑇)
6 simp3 1136 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝐹𝑇)
75, 6ffvelrnd 6944 1 (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wf 6414  cfv 6418  LHypclh 37925  LTrncltrn 38042  TEndoctendo 38693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-tendo 38696
This theorem is referenced by:  tendoco2  38709  tendococl  38713  tendoid  38714  tendoplcl2  38719  tendopltp  38721  tendoplcl  38722  tendoplcom  38723  tendodi1  38725  tendodi2  38726  tendo0pl  38732  tendoicl  38737  tendoipl  38738  cdlemi1  38759  cdlemi2  38760  cdlemi  38761  cdlemj2  38763  tendo0mul  38767  tendoconid  38770  tendotr  38771  cdleml1N  38917  cdleml2N  38918  cdleml6  38922  dva1dim  38926  tendospcl  38959  tendocnv  38962  tendospcanN  38964  dvalveclem  38966  dialss  38987  dvhvscacl  39044  dvhlveclem  39049  dib1dim  39106  dib1dim2  39109  diblss  39111  dicssdvh  39127  diclspsn  39135  cdlemn6  39143  dihopelvalcpre  39189  dih1  39227  dihglbcpreN  39241  dih1dimatlem0  39269  dih1dimatlem  39270
  Copyright terms: Public domain W3C validator