Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoconid Structured version   Visualization version   GIF version

Theorem tendoconid 36992
Description: The composition (product) of trace-preserving endormorphisms is nonzero when each argument is nonzero. (Contributed by NM, 8-Aug-2013.)
Hypotheses
Ref Expression
tendoid0.b 𝐵 = (Base‘𝐾)
tendoid0.h 𝐻 = (LHyp‘𝐾)
tendoid0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoid0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendoid0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendoconid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) → (𝑈𝑉) ≠ 𝑂)
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑈(𝑓)   𝐸(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem tendoconid
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 tendoid0.b . . . 4 𝐵 = (Base‘𝐾)
2 tendoid0.h . . . 4 𝐻 = (LHyp‘𝐾)
3 tendoid0.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
41, 2, 3cdlemftr0 36731 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑔𝑇 𝑔 ≠ ( I ↾ 𝐵))
543ad2ant1 1124 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) → ∃𝑔𝑇 𝑔 ≠ ( I ↾ 𝐵))
6 simpl1 1199 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simpl3l 1258 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑉𝐸)
8 tendoid0.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
92, 3, 8tendof 36926 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸) → 𝑉:𝑇𝑇)
106, 7, 9syl2anc 579 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑉:𝑇𝑇)
11 simprl 761 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑔𝑇)
12 fvco3 6537 . . . . 5 ((𝑉:𝑇𝑇𝑔𝑇) → ((𝑈𝑉)‘𝑔) = (𝑈‘(𝑉𝑔)))
1310, 11, 12syl2anc 579 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑈𝑉)‘𝑔) = (𝑈‘(𝑉𝑔)))
14 simpl2r 1256 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑈𝑂)
15 simpl2l 1254 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑈𝐸)
162, 3, 8tendocl 36930 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝑔𝑇) → (𝑉𝑔) ∈ 𝑇)
176, 7, 11, 16syl3anc 1439 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑉𝑔) ∈ 𝑇)
18 simpl3r 1260 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑉𝑂)
19 simpr 479 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)))
20 tendoid0.o . . . . . . . . . . 11 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
211, 2, 3, 8, 20tendoid0 36988 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸 ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑉𝑔) = ( I ↾ 𝐵) ↔ 𝑉 = 𝑂))
226, 7, 19, 21syl3anc 1439 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑉𝑔) = ( I ↾ 𝐵) ↔ 𝑉 = 𝑂))
2322necon3bid 3013 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑉𝑔) ≠ ( I ↾ 𝐵) ↔ 𝑉𝑂))
2418, 23mpbird 249 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑉𝑔) ≠ ( I ↾ 𝐵))
251, 2, 3, 8, 20tendoid0 36988 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ ((𝑉𝑔) ∈ 𝑇 ∧ (𝑉𝑔) ≠ ( I ↾ 𝐵))) → ((𝑈‘(𝑉𝑔)) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
266, 15, 17, 24, 25syl112anc 1442 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑈‘(𝑉𝑔)) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
2726necon3bid 3013 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑈‘(𝑉𝑔)) ≠ ( I ↾ 𝐵) ↔ 𝑈𝑂))
2814, 27mpbird 249 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑈‘(𝑉𝑔)) ≠ ( I ↾ 𝐵))
2913, 28eqnetrd 3036 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑈𝑉)‘𝑔) ≠ ( I ↾ 𝐵))
302, 8tendococl 36935 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑉) ∈ 𝐸)
316, 15, 7, 30syl3anc 1439 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑈𝑉) ∈ 𝐸)
321, 2, 3, 8, 20tendoid0 36988 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝑉) ∈ 𝐸 ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (((𝑈𝑉)‘𝑔) = ( I ↾ 𝐵) ↔ (𝑈𝑉) = 𝑂))
336, 31, 19, 32syl3anc 1439 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (((𝑈𝑉)‘𝑔) = ( I ↾ 𝐵) ↔ (𝑈𝑉) = 𝑂))
3433necon3bid 3013 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (((𝑈𝑉)‘𝑔) ≠ ( I ↾ 𝐵) ↔ (𝑈𝑉) ≠ 𝑂))
3529, 34mpbid 224 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑈𝑉) ≠ 𝑂)
365, 35rexlimddv 3218 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) → (𝑈𝑉) ≠ 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  wrex 3091  cmpt 4967   I cid 5262  cres 5359  ccom 5361  wf 6133  cfv 6137  Basecbs 16266  HLchlt 35513  LHypclh 36147  LTrncltrn 36264  TEndoctendo 36915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-riotaBAD 35116
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-1st 7447  df-2nd 7448  df-undef 7683  df-map 8144  df-proset 17325  df-poset 17343  df-plt 17355  df-lub 17371  df-glb 17372  df-join 17373  df-meet 17374  df-p0 17436  df-p1 17437  df-lat 17443  df-clat 17505  df-oposet 35339  df-ol 35341  df-oml 35342  df-covers 35429  df-ats 35430  df-atl 35461  df-cvlat 35485  df-hlat 35514  df-llines 35661  df-lplanes 35662  df-lvols 35663  df-lines 35664  df-psubsp 35666  df-pmap 35667  df-padd 35959  df-lhyp 36151  df-laut 36152  df-ldil 36267  df-ltrn 36268  df-trl 36322  df-tendo 36918
This theorem is referenced by:  erngdvlem4  37154  erngdvlem4-rN  37162
  Copyright terms: Public domain W3C validator