Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoconid Structured version   Visualization version   GIF version

Theorem tendoconid 39292
Description: The composition (product) of trace-preserving endormorphisms is nonzero when each argument is nonzero. (Contributed by NM, 8-Aug-2013.)
Hypotheses
Ref Expression
tendoid0.b 𝐵 = (Base‘𝐾)
tendoid0.h 𝐻 = (LHyp‘𝐾)
tendoid0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoid0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendoid0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendoconid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) → (𝑈𝑉) ≠ 𝑂)
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑈(𝑓)   𝐸(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem tendoconid
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 tendoid0.b . . . 4 𝐵 = (Base‘𝐾)
2 tendoid0.h . . . 4 𝐻 = (LHyp‘𝐾)
3 tendoid0.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
41, 2, 3cdlemftr0 39031 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑔𝑇 𝑔 ≠ ( I ↾ 𝐵))
543ad2ant1 1133 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) → ∃𝑔𝑇 𝑔 ≠ ( I ↾ 𝐵))
6 simpl1 1191 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simpl3l 1228 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑉𝐸)
8 tendoid0.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
92, 3, 8tendof 39226 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸) → 𝑉:𝑇𝑇)
106, 7, 9syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑉:𝑇𝑇)
11 simprl 769 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑔𝑇)
12 fvco3 6940 . . . . 5 ((𝑉:𝑇𝑇𝑔𝑇) → ((𝑈𝑉)‘𝑔) = (𝑈‘(𝑉𝑔)))
1310, 11, 12syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑈𝑉)‘𝑔) = (𝑈‘(𝑉𝑔)))
14 simpl2r 1227 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑈𝑂)
15 simpl2l 1226 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑈𝐸)
162, 3, 8tendocl 39230 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝑔𝑇) → (𝑉𝑔) ∈ 𝑇)
176, 7, 11, 16syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑉𝑔) ∈ 𝑇)
18 simpl3r 1229 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑉𝑂)
19 simpr 485 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)))
20 tendoid0.o . . . . . . . . . . 11 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
211, 2, 3, 8, 20tendoid0 39288 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸 ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑉𝑔) = ( I ↾ 𝐵) ↔ 𝑉 = 𝑂))
226, 7, 19, 21syl3anc 1371 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑉𝑔) = ( I ↾ 𝐵) ↔ 𝑉 = 𝑂))
2322necon3bid 2988 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑉𝑔) ≠ ( I ↾ 𝐵) ↔ 𝑉𝑂))
2418, 23mpbird 256 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑉𝑔) ≠ ( I ↾ 𝐵))
251, 2, 3, 8, 20tendoid0 39288 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ ((𝑉𝑔) ∈ 𝑇 ∧ (𝑉𝑔) ≠ ( I ↾ 𝐵))) → ((𝑈‘(𝑉𝑔)) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
266, 15, 17, 24, 25syl112anc 1374 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑈‘(𝑉𝑔)) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
2726necon3bid 2988 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑈‘(𝑉𝑔)) ≠ ( I ↾ 𝐵) ↔ 𝑈𝑂))
2814, 27mpbird 256 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑈‘(𝑉𝑔)) ≠ ( I ↾ 𝐵))
2913, 28eqnetrd 3011 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑈𝑉)‘𝑔) ≠ ( I ↾ 𝐵))
302, 8tendococl 39235 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑉) ∈ 𝐸)
316, 15, 7, 30syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑈𝑉) ∈ 𝐸)
321, 2, 3, 8, 20tendoid0 39288 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝑉) ∈ 𝐸 ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (((𝑈𝑉)‘𝑔) = ( I ↾ 𝐵) ↔ (𝑈𝑉) = 𝑂))
336, 31, 19, 32syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (((𝑈𝑉)‘𝑔) = ( I ↾ 𝐵) ↔ (𝑈𝑉) = 𝑂))
3433necon3bid 2988 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (((𝑈𝑉)‘𝑔) ≠ ( I ↾ 𝐵) ↔ (𝑈𝑉) ≠ 𝑂))
3529, 34mpbid 231 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑈𝑉) ≠ 𝑂)
365, 35rexlimddv 3158 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) → (𝑈𝑉) ≠ 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  cmpt 5188   I cid 5530  cres 5635  ccom 5637  wf 6492  cfv 6496  Basecbs 17083  HLchlt 37812  LHypclh 38447  LTrncltrn 38564  TEndoctendo 39215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-riotaBAD 37415
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-undef 8204  df-map 8767  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962  df-lvols 37963  df-lines 37964  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622  df-tendo 39218
This theorem is referenced by:  erngdvlem4  39454  erngdvlem4-rN  39462
  Copyright terms: Public domain W3C validator