Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoconid Structured version   Visualization version   GIF version

Theorem tendoconid 40874
Description: The composition (product) of trace-preserving endormorphisms is nonzero when each argument is nonzero. (Contributed by NM, 8-Aug-2013.)
Hypotheses
Ref Expression
tendoid0.b 𝐵 = (Base‘𝐾)
tendoid0.h 𝐻 = (LHyp‘𝐾)
tendoid0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoid0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendoid0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendoconid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) → (𝑈𝑉) ≠ 𝑂)
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑈(𝑓)   𝐸(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem tendoconid
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 tendoid0.b . . . 4 𝐵 = (Base‘𝐾)
2 tendoid0.h . . . 4 𝐻 = (LHyp‘𝐾)
3 tendoid0.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
41, 2, 3cdlemftr0 40613 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑔𝑇 𝑔 ≠ ( I ↾ 𝐵))
543ad2ant1 1133 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) → ∃𝑔𝑇 𝑔 ≠ ( I ↾ 𝐵))
6 simpl1 1192 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simpl3l 1229 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑉𝐸)
8 tendoid0.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
92, 3, 8tendof 40808 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸) → 𝑉:𝑇𝑇)
106, 7, 9syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑉:𝑇𝑇)
11 simprl 770 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑔𝑇)
12 fvco3 6921 . . . . 5 ((𝑉:𝑇𝑇𝑔𝑇) → ((𝑈𝑉)‘𝑔) = (𝑈‘(𝑉𝑔)))
1310, 11, 12syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑈𝑉)‘𝑔) = (𝑈‘(𝑉𝑔)))
14 simpl2r 1228 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑈𝑂)
15 simpl2l 1227 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑈𝐸)
162, 3, 8tendocl 40812 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝑔𝑇) → (𝑉𝑔) ∈ 𝑇)
176, 7, 11, 16syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑉𝑔) ∈ 𝑇)
18 simpl3r 1230 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑉𝑂)
19 simpr 484 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)))
20 tendoid0.o . . . . . . . . . . 11 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
211, 2, 3, 8, 20tendoid0 40870 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸 ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑉𝑔) = ( I ↾ 𝐵) ↔ 𝑉 = 𝑂))
226, 7, 19, 21syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑉𝑔) = ( I ↾ 𝐵) ↔ 𝑉 = 𝑂))
2322necon3bid 2972 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑉𝑔) ≠ ( I ↾ 𝐵) ↔ 𝑉𝑂))
2418, 23mpbird 257 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑉𝑔) ≠ ( I ↾ 𝐵))
251, 2, 3, 8, 20tendoid0 40870 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ ((𝑉𝑔) ∈ 𝑇 ∧ (𝑉𝑔) ≠ ( I ↾ 𝐵))) → ((𝑈‘(𝑉𝑔)) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
266, 15, 17, 24, 25syl112anc 1376 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑈‘(𝑉𝑔)) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
2726necon3bid 2972 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑈‘(𝑉𝑔)) ≠ ( I ↾ 𝐵) ↔ 𝑈𝑂))
2814, 27mpbird 257 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑈‘(𝑉𝑔)) ≠ ( I ↾ 𝐵))
2913, 28eqnetrd 2995 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑈𝑉)‘𝑔) ≠ ( I ↾ 𝐵))
302, 8tendococl 40817 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑉) ∈ 𝐸)
316, 15, 7, 30syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑈𝑉) ∈ 𝐸)
321, 2, 3, 8, 20tendoid0 40870 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝑉) ∈ 𝐸 ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (((𝑈𝑉)‘𝑔) = ( I ↾ 𝐵) ↔ (𝑈𝑉) = 𝑂))
336, 31, 19, 32syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (((𝑈𝑉)‘𝑔) = ( I ↾ 𝐵) ↔ (𝑈𝑉) = 𝑂))
3433necon3bid 2972 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (((𝑈𝑉)‘𝑔) ≠ ( I ↾ 𝐵) ↔ (𝑈𝑉) ≠ 𝑂))
3529, 34mpbid 232 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑈𝑉) ≠ 𝑂)
365, 35rexlimddv 3139 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) → (𝑈𝑉) ≠ 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  cmpt 5172   I cid 5510  cres 5618  ccom 5620  wf 6477  cfv 6481  Basecbs 17120  HLchlt 39395  LHypclh 40029  LTrncltrn 40146  TEndoctendo 40797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-riotaBAD 38998
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-undef 8203  df-map 8752  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-llines 39543  df-lplanes 39544  df-lvols 39545  df-lines 39546  df-psubsp 39548  df-pmap 39549  df-padd 39841  df-lhyp 40033  df-laut 40034  df-ldil 40149  df-ltrn 40150  df-trl 40204  df-tendo 40800
This theorem is referenced by:  erngdvlem4  41036  erngdvlem4-rN  41044
  Copyright terms: Public domain W3C validator