Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoconid Structured version   Visualization version   GIF version

Theorem tendoconid 39295
Description: The composition (product) of trace-preserving endormorphisms is nonzero when each argument is nonzero. (Contributed by NM, 8-Aug-2013.)
Hypotheses
Ref Expression
tendoid0.b 𝐡 = (Baseβ€˜πΎ)
tendoid0.h 𝐻 = (LHypβ€˜πΎ)
tendoid0.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
tendoid0.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
tendoid0.o 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
Assertion
Ref Expression
tendoconid (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) β†’ (π‘ˆ ∘ 𝑉) β‰  𝑂)
Distinct variable groups:   𝐡,𝑓   𝑇,𝑓
Allowed substitution hints:   π‘ˆ(𝑓)   𝐸(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑉(𝑓)   π‘Š(𝑓)

Proof of Theorem tendoconid
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 tendoid0.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 tendoid0.h . . . 4 𝐻 = (LHypβ€˜πΎ)
3 tendoid0.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
41, 2, 3cdlemftr0 39034 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ βˆƒπ‘” ∈ 𝑇 𝑔 β‰  ( I β†Ύ 𝐡))
543ad2ant1 1134 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) β†’ βˆƒπ‘” ∈ 𝑇 𝑔 β‰  ( I β†Ύ 𝐡))
6 simpl1 1192 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
7 simpl3l 1229 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ 𝑉 ∈ 𝐸)
8 tendoid0.e . . . . . . 7 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
92, 3, 8tendof 39229 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑉 ∈ 𝐸) β†’ 𝑉:π‘‡βŸΆπ‘‡)
106, 7, 9syl2anc 585 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ 𝑉:π‘‡βŸΆπ‘‡)
11 simprl 770 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ 𝑔 ∈ 𝑇)
12 fvco3 6941 . . . . 5 ((𝑉:π‘‡βŸΆπ‘‡ ∧ 𝑔 ∈ 𝑇) β†’ ((π‘ˆ ∘ 𝑉)β€˜π‘”) = (π‘ˆβ€˜(π‘‰β€˜π‘”)))
1310, 11, 12syl2anc 585 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ ((π‘ˆ ∘ 𝑉)β€˜π‘”) = (π‘ˆβ€˜(π‘‰β€˜π‘”)))
14 simpl2r 1228 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ π‘ˆ β‰  𝑂)
15 simpl2l 1227 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ π‘ˆ ∈ 𝐸)
162, 3, 8tendocl 39233 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑉 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) β†’ (π‘‰β€˜π‘”) ∈ 𝑇)
176, 7, 11, 16syl3anc 1372 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ (π‘‰β€˜π‘”) ∈ 𝑇)
18 simpl3r 1230 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ 𝑉 β‰  𝑂)
19 simpr 486 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)))
20 tendoid0.o . . . . . . . . . . 11 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
211, 2, 3, 8, 20tendoid0 39291 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑉 ∈ 𝐸 ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ ((π‘‰β€˜π‘”) = ( I β†Ύ 𝐡) ↔ 𝑉 = 𝑂))
226, 7, 19, 21syl3anc 1372 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ ((π‘‰β€˜π‘”) = ( I β†Ύ 𝐡) ↔ 𝑉 = 𝑂))
2322necon3bid 2989 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ ((π‘‰β€˜π‘”) β‰  ( I β†Ύ 𝐡) ↔ 𝑉 β‰  𝑂))
2418, 23mpbird 257 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ (π‘‰β€˜π‘”) β‰  ( I β†Ύ 𝐡))
251, 2, 3, 8, 20tendoid0 39291 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ ((π‘‰β€˜π‘”) ∈ 𝑇 ∧ (π‘‰β€˜π‘”) β‰  ( I β†Ύ 𝐡))) β†’ ((π‘ˆβ€˜(π‘‰β€˜π‘”)) = ( I β†Ύ 𝐡) ↔ π‘ˆ = 𝑂))
266, 15, 17, 24, 25syl112anc 1375 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ ((π‘ˆβ€˜(π‘‰β€˜π‘”)) = ( I β†Ύ 𝐡) ↔ π‘ˆ = 𝑂))
2726necon3bid 2989 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ ((π‘ˆβ€˜(π‘‰β€˜π‘”)) β‰  ( I β†Ύ 𝐡) ↔ π‘ˆ β‰  𝑂))
2814, 27mpbird 257 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ (π‘ˆβ€˜(π‘‰β€˜π‘”)) β‰  ( I β†Ύ 𝐡))
2913, 28eqnetrd 3012 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ ((π‘ˆ ∘ 𝑉)β€˜π‘”) β‰  ( I β†Ύ 𝐡))
302, 8tendococl 39238 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) β†’ (π‘ˆ ∘ 𝑉) ∈ 𝐸)
316, 15, 7, 30syl3anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ (π‘ˆ ∘ 𝑉) ∈ 𝐸)
321, 2, 3, 8, 20tendoid0 39291 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∘ 𝑉) ∈ 𝐸 ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ (((π‘ˆ ∘ 𝑉)β€˜π‘”) = ( I β†Ύ 𝐡) ↔ (π‘ˆ ∘ 𝑉) = 𝑂))
336, 31, 19, 32syl3anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ (((π‘ˆ ∘ 𝑉)β€˜π‘”) = ( I β†Ύ 𝐡) ↔ (π‘ˆ ∘ 𝑉) = 𝑂))
3433necon3bid 2989 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ (((π‘ˆ ∘ 𝑉)β€˜π‘”) β‰  ( I β†Ύ 𝐡) ↔ (π‘ˆ ∘ 𝑉) β‰  𝑂))
3529, 34mpbid 231 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ (π‘ˆ ∘ 𝑉) β‰  𝑂)
365, 35rexlimddv 3159 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ π‘ˆ β‰  𝑂) ∧ (𝑉 ∈ 𝐸 ∧ 𝑉 β‰  𝑂)) β†’ (π‘ˆ ∘ 𝑉) β‰  𝑂)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2944  βˆƒwrex 3074   ↦ cmpt 5189   I cid 5531   β†Ύ cres 5636   ∘ ccom 5638  βŸΆwf 6493  β€˜cfv 6497  Basecbs 17084  HLchlt 37815  LHypclh 38450  LTrncltrn 38567  TEndoctendo 39218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-riotaBAD 37418
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rmo 3354  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-undef 8205  df-map 8768  df-proset 18185  df-poset 18203  df-plt 18220  df-lub 18236  df-glb 18237  df-join 18238  df-meet 18239  df-p0 18315  df-p1 18316  df-lat 18322  df-clat 18389  df-oposet 37641  df-ol 37643  df-oml 37644  df-covers 37731  df-ats 37732  df-atl 37763  df-cvlat 37787  df-hlat 37816  df-llines 37964  df-lplanes 37965  df-lvols 37966  df-lines 37967  df-psubsp 37969  df-pmap 37970  df-padd 38262  df-lhyp 38454  df-laut 38455  df-ldil 38570  df-ltrn 38571  df-trl 38625  df-tendo 39221
This theorem is referenced by:  erngdvlem4  39457  erngdvlem4-rN  39465
  Copyright terms: Public domain W3C validator