Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoplco2 Structured version   Visualization version   GIF version

Theorem tendoplco2 40307
Description: Value of result of endomorphism sum operation on a translation composition. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h 𝐻 = (LHypβ€˜πΎ)
tendopl.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
tendopl.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
tendopl.p 𝑃 = (𝑠 ∈ 𝐸, 𝑑 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))
Assertion
Ref Expression
tendoplco2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) β†’ ((π‘ˆπ‘ƒπ‘‰)β€˜(𝐹 ∘ 𝐺)) = (((π‘ˆπ‘ƒπ‘‰)β€˜πΉ) ∘ ((π‘ˆπ‘ƒπ‘‰)β€˜πΊ)))
Distinct variable groups:   𝑑,𝑠,𝐸   𝑓,𝑠,𝑑,𝑇   𝑓,π‘Š,𝑠,𝑑   𝑓,𝐺
Allowed substitution hints:   𝑃(𝑑,𝑓,𝑠)   π‘ˆ(𝑑,𝑓,𝑠)   𝐸(𝑓)   𝐹(𝑑,𝑓,𝑠)   𝐺(𝑑,𝑠)   𝐻(𝑑,𝑓,𝑠)   𝐾(𝑑,𝑓,𝑠)   𝑉(𝑑,𝑓,𝑠)

Proof of Theorem tendoplco2
StepHypRef Expression
1 tendopl.h . . 3 𝐻 = (LHypβ€˜πΎ)
2 tendopl.t . . 3 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
3 tendopl.e . . 3 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
41, 2, 3tendoco2 40296 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) β†’ ((π‘ˆβ€˜(𝐹 ∘ 𝐺)) ∘ (π‘‰β€˜(𝐹 ∘ 𝐺))) = (((π‘ˆβ€˜πΉ) ∘ (π‘‰β€˜πΉ)) ∘ ((π‘ˆβ€˜πΊ) ∘ (π‘‰β€˜πΊ))))
5 simp1 1133 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
6 simp3l 1198 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) β†’ 𝐹 ∈ 𝑇)
7 simp3r 1199 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) β†’ 𝐺 ∈ 𝑇)
81, 2ltrnco 40247 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ (𝐹 ∘ 𝐺) ∈ 𝑇)
95, 6, 7, 8syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) β†’ (𝐹 ∘ 𝐺) ∈ 𝑇)
10 simp2l 1196 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) β†’ π‘ˆ ∈ 𝐸)
11 simp2r 1197 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) β†’ 𝑉 ∈ 𝐸)
12 simp3 1135 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) β†’ (𝐹 ∘ 𝐺) ∈ 𝑇)
13 tendopl.p . . . . 5 𝑃 = (𝑠 ∈ 𝐸, 𝑑 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))
1413, 2tendopl2 40305 . . . 4 ((π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) β†’ ((π‘ˆπ‘ƒπ‘‰)β€˜(𝐹 ∘ 𝐺)) = ((π‘ˆβ€˜(𝐹 ∘ 𝐺)) ∘ (π‘‰β€˜(𝐹 ∘ 𝐺))))
1510, 11, 12, 14syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) β†’ ((π‘ˆπ‘ƒπ‘‰)β€˜(𝐹 ∘ 𝐺)) = ((π‘ˆβ€˜(𝐹 ∘ 𝐺)) ∘ (π‘‰β€˜(𝐹 ∘ 𝐺))))
169, 15syld3an3 1406 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) β†’ ((π‘ˆπ‘ƒπ‘‰)β€˜(𝐹 ∘ 𝐺)) = ((π‘ˆβ€˜(𝐹 ∘ 𝐺)) ∘ (π‘‰β€˜(𝐹 ∘ 𝐺))))
17 simp2l 1196 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) β†’ π‘ˆ ∈ 𝐸)
18 simp2r 1197 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) β†’ 𝑉 ∈ 𝐸)
1913, 2tendopl2 40305 . . . 4 ((π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) β†’ ((π‘ˆπ‘ƒπ‘‰)β€˜πΉ) = ((π‘ˆβ€˜πΉ) ∘ (π‘‰β€˜πΉ)))
2017, 18, 6, 19syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) β†’ ((π‘ˆπ‘ƒπ‘‰)β€˜πΉ) = ((π‘ˆβ€˜πΉ) ∘ (π‘‰β€˜πΉ)))
2113, 2tendopl2 40305 . . . 4 ((π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇) β†’ ((π‘ˆπ‘ƒπ‘‰)β€˜πΊ) = ((π‘ˆβ€˜πΊ) ∘ (π‘‰β€˜πΊ)))
2217, 18, 7, 21syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) β†’ ((π‘ˆπ‘ƒπ‘‰)β€˜πΊ) = ((π‘ˆβ€˜πΊ) ∘ (π‘‰β€˜πΊ)))
2320, 22coeq12d 5861 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) β†’ (((π‘ˆπ‘ƒπ‘‰)β€˜πΉ) ∘ ((π‘ˆπ‘ƒπ‘‰)β€˜πΊ)) = (((π‘ˆβ€˜πΉ) ∘ (π‘‰β€˜πΉ)) ∘ ((π‘ˆβ€˜πΊ) ∘ (π‘‰β€˜πΊ))))
244, 16, 233eqtr4d 2775 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) β†’ ((π‘ˆπ‘ƒπ‘‰)β€˜(𝐹 ∘ 𝐺)) = (((π‘ˆπ‘ƒπ‘‰)β€˜πΉ) ∘ ((π‘ˆπ‘ƒπ‘‰)β€˜πΊ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   ↦ cmpt 5226   ∘ ccom 5676  β€˜cfv 6542  (class class class)co 7415   ∈ cmpo 7417  HLchlt 38877  LHypclh 39512  LTrncltrn 39629  TEndoctendo 40280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-riotaBAD 38480
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-1st 7989  df-2nd 7990  df-undef 8275  df-map 8843  df-proset 18284  df-poset 18302  df-plt 18319  df-lub 18335  df-glb 18336  df-join 18337  df-meet 18338  df-p0 18414  df-p1 18415  df-lat 18421  df-clat 18488  df-oposet 38703  df-ol 38705  df-oml 38706  df-covers 38793  df-ats 38794  df-atl 38825  df-cvlat 38849  df-hlat 38878  df-llines 39026  df-lplanes 39027  df-lvols 39028  df-lines 39029  df-psubsp 39031  df-pmap 39032  df-padd 39324  df-lhyp 39516  df-laut 39517  df-ldil 39632  df-ltrn 39633  df-trl 39687  df-tendo 40283
This theorem is referenced by:  tendoplcl  40309
  Copyright terms: Public domain W3C validator