| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoplco2 | Structured version Visualization version GIF version | ||
| Description: Value of result of endomorphism sum operation on a translation composition. (Contributed by NM, 10-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendopl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendopl.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendopl.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| tendopl.p | ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
| Ref | Expression |
|---|---|
| tendoplco2 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑈𝑃𝑉)‘(𝐹 ∘ 𝐺)) = (((𝑈𝑃𝑉)‘𝐹) ∘ ((𝑈𝑃𝑉)‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendopl.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | tendopl.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | tendopl.e | . . 3 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 4 | 1, 2, 3 | tendoco2 40757 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑈‘(𝐹 ∘ 𝐺)) ∘ (𝑉‘(𝐹 ∘ 𝐺))) = (((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∘ ((𝑈‘𝐺) ∘ (𝑉‘𝐺)))) |
| 5 | simp1 1136 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 6 | simp3l 1202 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝐹 ∈ 𝑇) | |
| 7 | simp3r 1203 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝐺 ∈ 𝑇) | |
| 8 | 1, 2 | ltrnco 40708 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐹 ∘ 𝐺) ∈ 𝑇) |
| 9 | 5, 6, 7, 8 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝐹 ∘ 𝐺) ∈ 𝑇) |
| 10 | simp2l 1200 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) → 𝑈 ∈ 𝐸) | |
| 11 | simp2r 1201 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) → 𝑉 ∈ 𝐸) | |
| 12 | simp3 1138 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) → (𝐹 ∘ 𝐺) ∈ 𝑇) | |
| 13 | tendopl.p | . . . . 5 ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
| 14 | 13, 2 | tendopl2 40766 | . . . 4 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) → ((𝑈𝑃𝑉)‘(𝐹 ∘ 𝐺)) = ((𝑈‘(𝐹 ∘ 𝐺)) ∘ (𝑉‘(𝐹 ∘ 𝐺)))) |
| 15 | 10, 11, 12, 14 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) → ((𝑈𝑃𝑉)‘(𝐹 ∘ 𝐺)) = ((𝑈‘(𝐹 ∘ 𝐺)) ∘ (𝑉‘(𝐹 ∘ 𝐺)))) |
| 16 | 9, 15 | syld3an3 1411 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑈𝑃𝑉)‘(𝐹 ∘ 𝐺)) = ((𝑈‘(𝐹 ∘ 𝐺)) ∘ (𝑉‘(𝐹 ∘ 𝐺)))) |
| 17 | simp2l 1200 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝑈 ∈ 𝐸) | |
| 18 | simp2r 1201 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝑉 ∈ 𝐸) | |
| 19 | 13, 2 | tendopl2 40766 | . . . 4 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
| 20 | 17, 18, 6, 19 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
| 21 | 13, 2 | tendopl2 40766 | . . . 4 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝐺) = ((𝑈‘𝐺) ∘ (𝑉‘𝐺))) |
| 22 | 17, 18, 7, 21 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑈𝑃𝑉)‘𝐺) = ((𝑈‘𝐺) ∘ (𝑉‘𝐺))) |
| 23 | 20, 22 | coeq12d 5807 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (((𝑈𝑃𝑉)‘𝐹) ∘ ((𝑈𝑃𝑉)‘𝐺)) = (((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∘ ((𝑈‘𝐺) ∘ (𝑉‘𝐺)))) |
| 24 | 4, 16, 23 | 3eqtr4d 2774 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑈𝑃𝑉)‘(𝐹 ∘ 𝐺)) = (((𝑈𝑃𝑉)‘𝐹) ∘ ((𝑈𝑃𝑉)‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5173 ∘ ccom 5623 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 HLchlt 39339 LHypclh 39973 LTrncltrn 40090 TEndoctendo 40741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-riotaBAD 38942 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-undef 8206 df-map 8755 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39165 df-ol 39167 df-oml 39168 df-covers 39255 df-ats 39256 df-atl 39287 df-cvlat 39311 df-hlat 39340 df-llines 39487 df-lplanes 39488 df-lvols 39489 df-lines 39490 df-psubsp 39492 df-pmap 39493 df-padd 39785 df-lhyp 39977 df-laut 39978 df-ldil 40093 df-ltrn 40094 df-trl 40148 df-tendo 40744 |
| This theorem is referenced by: tendoplcl 40770 |
| Copyright terms: Public domain | W3C validator |