![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoplco2 | Structured version Visualization version GIF version |
Description: Value of result of endomorphism sum operation on a translation composition. (Contributed by NM, 10-Jun-2013.) |
Ref | Expression |
---|---|
tendopl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendopl.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendopl.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
tendopl.p | ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
Ref | Expression |
---|---|
tendoplco2 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑈𝑃𝑉)‘(𝐹 ∘ 𝐺)) = (((𝑈𝑃𝑉)‘𝐹) ∘ ((𝑈𝑃𝑉)‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendopl.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | tendopl.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | tendopl.e | . . 3 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | tendoco2 39628 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑈‘(𝐹 ∘ 𝐺)) ∘ (𝑉‘(𝐹 ∘ 𝐺))) = (((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∘ ((𝑈‘𝐺) ∘ (𝑉‘𝐺)))) |
5 | simp1 1137 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | simp3l 1202 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝐹 ∈ 𝑇) | |
7 | simp3r 1203 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝐺 ∈ 𝑇) | |
8 | 1, 2 | ltrnco 39579 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐹 ∘ 𝐺) ∈ 𝑇) |
9 | 5, 6, 7, 8 | syl3anc 1372 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝐹 ∘ 𝐺) ∈ 𝑇) |
10 | simp2l 1200 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) → 𝑈 ∈ 𝐸) | |
11 | simp2r 1201 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) → 𝑉 ∈ 𝐸) | |
12 | simp3 1139 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) → (𝐹 ∘ 𝐺) ∈ 𝑇) | |
13 | tendopl.p | . . . . 5 ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
14 | 13, 2 | tendopl2 39637 | . . . 4 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) → ((𝑈𝑃𝑉)‘(𝐹 ∘ 𝐺)) = ((𝑈‘(𝐹 ∘ 𝐺)) ∘ (𝑉‘(𝐹 ∘ 𝐺)))) |
15 | 10, 11, 12, 14 | syl3anc 1372 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) → ((𝑈𝑃𝑉)‘(𝐹 ∘ 𝐺)) = ((𝑈‘(𝐹 ∘ 𝐺)) ∘ (𝑉‘(𝐹 ∘ 𝐺)))) |
16 | 9, 15 | syld3an3 1410 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑈𝑃𝑉)‘(𝐹 ∘ 𝐺)) = ((𝑈‘(𝐹 ∘ 𝐺)) ∘ (𝑉‘(𝐹 ∘ 𝐺)))) |
17 | simp2l 1200 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝑈 ∈ 𝐸) | |
18 | simp2r 1201 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝑉 ∈ 𝐸) | |
19 | 13, 2 | tendopl2 39637 | . . . 4 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
20 | 17, 18, 6, 19 | syl3anc 1372 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
21 | 13, 2 | tendopl2 39637 | . . . 4 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝐺) = ((𝑈‘𝐺) ∘ (𝑉‘𝐺))) |
22 | 17, 18, 7, 21 | syl3anc 1372 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑈𝑃𝑉)‘𝐺) = ((𝑈‘𝐺) ∘ (𝑉‘𝐺))) |
23 | 20, 22 | coeq12d 5863 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (((𝑈𝑃𝑉)‘𝐹) ∘ ((𝑈𝑃𝑉)‘𝐺)) = (((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∘ ((𝑈‘𝐺) ∘ (𝑉‘𝐺)))) |
24 | 4, 16, 23 | 3eqtr4d 2783 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑈𝑃𝑉)‘(𝐹 ∘ 𝐺)) = (((𝑈𝑃𝑉)‘𝐹) ∘ ((𝑈𝑃𝑉)‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ↦ cmpt 5231 ∘ ccom 5680 ‘cfv 6541 (class class class)co 7406 ∈ cmpo 7408 HLchlt 38209 LHypclh 38844 LTrncltrn 38961 TEndoctendo 39612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-riotaBAD 37812 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-1st 7972 df-2nd 7973 df-undef 8255 df-map 8819 df-proset 18245 df-poset 18263 df-plt 18280 df-lub 18296 df-glb 18297 df-join 18298 df-meet 18299 df-p0 18375 df-p1 18376 df-lat 18382 df-clat 18449 df-oposet 38035 df-ol 38037 df-oml 38038 df-covers 38125 df-ats 38126 df-atl 38157 df-cvlat 38181 df-hlat 38210 df-llines 38358 df-lplanes 38359 df-lvols 38360 df-lines 38361 df-psubsp 38363 df-pmap 38364 df-padd 38656 df-lhyp 38848 df-laut 38849 df-ldil 38964 df-ltrn 38965 df-trl 39019 df-tendo 39615 |
This theorem is referenced by: tendoplcl 39641 |
Copyright terms: Public domain | W3C validator |