![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrleneltd | Structured version Visualization version GIF version |
Description: 'Less than or equal to' and 'not equals' implies 'less than', for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
xrleneltd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrleneltd.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrleneltd.alb | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
xrleneltd.anb | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
xrleneltd | ⊢ (𝜑 → 𝐴 < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrleneltd.anb | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | 1 | necomd 2985 | . 2 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
3 | xrleneltd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
4 | xrleneltd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
5 | xrleneltd.alb | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
6 | xrleltne 13173 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴)) | |
7 | 3, 4, 5, 6 | syl3anc 1368 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴)) |
8 | 2, 7 | mpbird 256 | 1 ⊢ (𝜑 → 𝐴 < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2098 ≠ wne 2929 class class class wbr 5152 ℝ*cxr 11293 < clt 11294 ≤ cle 11295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-pre-lttri 11228 ax-pre-lttrn 11229 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5579 df-po 5593 df-so 5594 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-er 8733 df-en 8974 df-dom 8975 df-sdom 8976 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 |
This theorem is referenced by: infleinf 44924 pimxrneun 45041 eliccelicod 45085 ge0xrre 45086 ressioosup 45110 ressiooinf 45112 sge0pr 45952 |
Copyright terms: Public domain | W3C validator |