Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrleneltd Structured version   Visualization version   GIF version

Theorem xrleneltd 45350
Description: 'Less than or equal to' and 'not equals' implies 'less than', for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
xrleneltd.a (𝜑𝐴 ∈ ℝ*)
xrleneltd.b (𝜑𝐵 ∈ ℝ*)
xrleneltd.alb (𝜑𝐴𝐵)
xrleneltd.anb (𝜑𝐴𝐵)
Assertion
Ref Expression
xrleneltd (𝜑𝐴 < 𝐵)

Proof of Theorem xrleneltd
StepHypRef Expression
1 xrleneltd.anb . . 3 (𝜑𝐴𝐵)
21necomd 2987 . 2 (𝜑𝐵𝐴)
3 xrleneltd.a . . 3 (𝜑𝐴 ∈ ℝ*)
4 xrleneltd.b . . 3 (𝜑𝐵 ∈ ℝ*)
5 xrleneltd.alb . . 3 (𝜑𝐴𝐵)
6 xrleltne 13161 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 < 𝐵𝐵𝐴))
73, 4, 5, 6syl3anc 1373 . 2 (𝜑 → (𝐴 < 𝐵𝐵𝐴))
82, 7mpbird 257 1 (𝜑𝐴 < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  wne 2932   class class class wbr 5119  *cxr 11268   < clt 11269  cle 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275
This theorem is referenced by:  infleinf  45399  pimxrneun  45515  eliccelicod  45559  ge0xrre  45560  ressioosup  45584  ressiooinf  45586  sge0pr  46423
  Copyright terms: Public domain W3C validator