Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrleneltd Structured version   Visualization version   GIF version

Theorem xrleneltd 45326
Description: 'Less than or equal to' and 'not equals' implies 'less than', for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
xrleneltd.a (𝜑𝐴 ∈ ℝ*)
xrleneltd.b (𝜑𝐵 ∈ ℝ*)
xrleneltd.alb (𝜑𝐴𝐵)
xrleneltd.anb (𝜑𝐴𝐵)
Assertion
Ref Expression
xrleneltd (𝜑𝐴 < 𝐵)

Proof of Theorem xrleneltd
StepHypRef Expression
1 xrleneltd.anb . . 3 (𝜑𝐴𝐵)
21necomd 2981 . 2 (𝜑𝐵𝐴)
3 xrleneltd.a . . 3 (𝜑𝐴 ∈ ℝ*)
4 xrleneltd.b . . 3 (𝜑𝐵 ∈ ℝ*)
5 xrleneltd.alb . . 3 (𝜑𝐴𝐵)
6 xrleltne 13112 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 < 𝐵𝐵𝐴))
73, 4, 5, 6syl3anc 1373 . 2 (𝜑 → (𝐴 < 𝐵𝐵𝐴))
82, 7mpbird 257 1 (𝜑𝐴 < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wne 2926   class class class wbr 5110  *cxr 11214   < clt 11215  cle 11216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221
This theorem is referenced by:  infleinf  45375  pimxrneun  45491  eliccelicod  45535  ge0xrre  45536  ressioosup  45560  ressiooinf  45562  sge0pr  46399
  Copyright terms: Public domain W3C validator