Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccelicod Structured version   Visualization version   GIF version

Theorem eliccelicod 44828
Description: A member of a closed interval that is not the upper bound, is a member of the left-closed, right-open interval. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
eliccelicod.a (𝜑𝐴 ∈ ℝ*)
eliccelicod.b (𝜑𝐵 ∈ ℝ*)
eliccelicod.c (𝜑𝐶 ∈ (𝐴[,]𝐵))
eliccelicod.d (𝜑𝐶𝐵)
Assertion
Ref Expression
eliccelicod (𝜑𝐶 ∈ (𝐴[,)𝐵))

Proof of Theorem eliccelicod
StepHypRef Expression
1 eliccelicod.a . 2 (𝜑𝐴 ∈ ℝ*)
2 eliccelicod.b . 2 (𝜑𝐵 ∈ ℝ*)
3 eliccelicod.c . . 3 (𝜑𝐶 ∈ (𝐴[,]𝐵))
4 eliccxr 13430 . . 3 (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ∈ ℝ*)
53, 4syl 17 . 2 (𝜑𝐶 ∈ ℝ*)
6 iccgelb 13398 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
71, 2, 3, 6syl3anc 1369 . 2 (𝜑𝐴𝐶)
8 iccleub 13397 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
91, 2, 3, 8syl3anc 1369 . . 3 (𝜑𝐶𝐵)
10 eliccelicod.d . . 3 (𝜑𝐶𝐵)
115, 2, 9, 10xrleneltd 44618 . 2 (𝜑𝐶 < 𝐵)
121, 2, 5, 7, 11elicod 13392 1 (𝜑𝐶 ∈ (𝐴[,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  wne 2935   class class class wbr 5142  (class class class)co 7414  *cxr 11263  cle 11265  [,)cico 13344  [,]cicc 13345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-pre-lttri 11198  ax-pre-lttrn 11199
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7985  df-2nd 7986  df-er 8716  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-ico 13348  df-icc 13349
This theorem is referenced by:  carageniuncl  45824
  Copyright terms: Public domain W3C validator