Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccelicod Structured version   Visualization version   GIF version

Theorem eliccelicod 45053
Description: A member of a closed interval that is not the upper bound, is a member of the left-closed, right-open interval. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
eliccelicod.a (𝜑𝐴 ∈ ℝ*)
eliccelicod.b (𝜑𝐵 ∈ ℝ*)
eliccelicod.c (𝜑𝐶 ∈ (𝐴[,]𝐵))
eliccelicod.d (𝜑𝐶𝐵)
Assertion
Ref Expression
eliccelicod (𝜑𝐶 ∈ (𝐴[,)𝐵))

Proof of Theorem eliccelicod
StepHypRef Expression
1 eliccelicod.a . 2 (𝜑𝐴 ∈ ℝ*)
2 eliccelicod.b . 2 (𝜑𝐵 ∈ ℝ*)
3 eliccelicod.c . . 3 (𝜑𝐶 ∈ (𝐴[,]𝐵))
4 eliccxr 13447 . . 3 (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ∈ ℝ*)
53, 4syl 17 . 2 (𝜑𝐶 ∈ ℝ*)
6 iccgelb 13415 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
71, 2, 3, 6syl3anc 1368 . 2 (𝜑𝐴𝐶)
8 iccleub 13414 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
91, 2, 3, 8syl3anc 1368 . . 3 (𝜑𝐶𝐵)
10 eliccelicod.d . . 3 (𝜑𝐶𝐵)
115, 2, 9, 10xrleneltd 44843 . 2 (𝜑𝐶 < 𝐵)
121, 2, 5, 7, 11elicod 13409 1 (𝜑𝐶 ∈ (𝐴[,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  wne 2929   class class class wbr 5149  (class class class)co 7419  *cxr 11279  cle 11281  [,)cico 13361  [,]cicc 13362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-pre-lttri 11214  ax-pre-lttrn 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-ico 13365  df-icc 13366
This theorem is referenced by:  carageniuncl  46049
  Copyright terms: Public domain W3C validator