Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccelicod Structured version   Visualization version   GIF version

Theorem eliccelicod 40658
Description: A member of a closed interval that is not the upper bound, is a member of the left-closed, right-open interval. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
eliccelicod.a (𝜑𝐴 ∈ ℝ*)
eliccelicod.b (𝜑𝐵 ∈ ℝ*)
eliccelicod.c (𝜑𝐶 ∈ (𝐴[,]𝐵))
eliccelicod.d (𝜑𝐶𝐵)
Assertion
Ref Expression
eliccelicod (𝜑𝐶 ∈ (𝐴[,)𝐵))

Proof of Theorem eliccelicod
StepHypRef Expression
1 eliccelicod.a . 2 (𝜑𝐴 ∈ ℝ*)
2 eliccelicod.b . 2 (𝜑𝐵 ∈ ℝ*)
3 eliccelicod.c . . 3 (𝜑𝐶 ∈ (𝐴[,]𝐵))
4 eliccxr 12572 . . 3 (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ∈ ℝ*)
53, 4syl 17 . 2 (𝜑𝐶 ∈ ℝ*)
6 iccgelb 12542 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
71, 2, 3, 6syl3anc 1439 . 2 (𝜑𝐴𝐶)
8 iccleub 12541 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
91, 2, 3, 8syl3anc 1439 . . 3 (𝜑𝐶𝐵)
10 eliccelicod.d . . 3 (𝜑𝐶𝐵)
115, 2, 9, 10xrleneltd 40440 . 2 (𝜑𝐶 < 𝐵)
121, 2, 5, 7, 11elicod 12536 1 (𝜑𝐶 ∈ (𝐴[,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wne 2968   class class class wbr 4886  (class class class)co 6922  *cxr 10410  cle 10412  [,)cico 12489  [,]cicc 12490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-pre-lttri 10346  ax-pre-lttrn 10347
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-po 5274  df-so 5275  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-ico 12493  df-icc 12494
This theorem is referenced by:  carageniuncl  41657
  Copyright terms: Public domain W3C validator