| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliccelicod | Structured version Visualization version GIF version | ||
| Description: A member of a closed interval that is not the upper bound, is a member of the left-closed, right-open interval. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| eliccelicod.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| eliccelicod.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| eliccelicod.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
| eliccelicod.d | ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| eliccelicod | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliccelicod.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | eliccelicod.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 3 | eliccelicod.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) | |
| 4 | eliccxr 13475 | . . 3 ⊢ (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ∈ ℝ*) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| 6 | iccgelb 13443 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) | |
| 7 | 1, 2, 3, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| 8 | iccleub 13442 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) | |
| 9 | 1, 2, 3, 8 | syl3anc 1373 | . . 3 ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
| 10 | eliccelicod.d | . . 3 ⊢ (𝜑 → 𝐶 ≠ 𝐵) | |
| 11 | 5, 2, 9, 10 | xrleneltd 45334 | . 2 ⊢ (𝜑 → 𝐶 < 𝐵) |
| 12 | 1, 2, 5, 7, 11 | elicod 13437 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2940 class class class wbr 5143 (class class class)co 7431 ℝ*cxr 11294 ≤ cle 11296 [,)cico 13389 [,]cicc 13390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-pre-lttri 11229 ax-pre-lttrn 11230 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-ico 13393 df-icc 13394 |
| This theorem is referenced by: carageniuncl 46538 |
| Copyright terms: Public domain | W3C validator |