![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ressioosup | Structured version Visualization version GIF version |
Description: If the supremum does not belong to a set of reals, the set is a subset of the unbounded below, right-open interval, with upper bound equal to the supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ressioosup.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
ressioosup.s | ⊢ 𝑆 = sup(𝐴, ℝ*, < ) |
ressioosup.n | ⊢ (𝜑 → ¬ 𝑆 ∈ 𝐴) |
ressioosup.i | ⊢ 𝐼 = (-∞(,)𝑆) |
Ref | Expression |
---|---|
ressioosup | ⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 11267 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
2 | 1 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -∞ ∈ ℝ*) |
3 | ressioosup.s | . . . . . 6 ⊢ 𝑆 = sup(𝐴, ℝ*, < ) | |
4 | ressioosup.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
5 | ressxr 11254 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ* | |
6 | 5 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → ℝ ⊆ ℝ*) |
7 | 4, 6 | sstrd 3991 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
8 | 7 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ*) |
9 | 8 | supxrcld 43781 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
10 | 3, 9 | eqeltrid 2837 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ∈ ℝ*) |
11 | 4 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
12 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
13 | 11, 12 | sseldd 3982 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
14 | 13 | mnfltd 13100 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -∞ < 𝑥) |
15 | 7 | sselda 3981 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
16 | supxrub 13299 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < )) | |
17 | 8, 12, 16 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < )) |
18 | 3 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 = sup(𝐴, ℝ*, < )) |
19 | 18 | eqcomd 2738 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → sup(𝐴, ℝ*, < ) = 𝑆) |
20 | 17, 19 | breqtrd 5173 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ 𝑆) |
21 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑥 = 𝑆 → 𝑥 = 𝑆) | |
22 | 21 | eqcomd 2738 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑆 → 𝑆 = 𝑥) |
23 | 22 | adantl 482 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑆 = 𝑥) |
24 | simpl 483 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑥 ∈ 𝐴) | |
25 | 23, 24 | eqeltrd 2833 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑆 ∈ 𝐴) |
26 | 25 | adantll 712 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 𝑆) → 𝑆 ∈ 𝐴) |
27 | ressioosup.n | . . . . . . . . 9 ⊢ (𝜑 → ¬ 𝑆 ∈ 𝐴) | |
28 | 27 | ad2antrr 724 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 𝑆) → ¬ 𝑆 ∈ 𝐴) |
29 | 26, 28 | pm2.65da 815 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 = 𝑆) |
30 | 29 | neqned 2947 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝑆) |
31 | 15, 10, 20, 30 | xrleneltd 44019 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 < 𝑆) |
32 | 2, 10, 13, 14, 31 | eliood 44197 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (-∞(,)𝑆)) |
33 | ressioosup.i | . . . 4 ⊢ 𝐼 = (-∞(,)𝑆) | |
34 | 32, 33 | eleqtrrdi 2844 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐼) |
35 | 34 | ralrimiva 3146 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐼) |
36 | dfss3 3969 | . 2 ⊢ (𝐴 ⊆ 𝐼 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐼) | |
37 | 35, 36 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ⊆ wss 3947 class class class wbr 5147 (class class class)co 7405 supcsup 9431 ℝcr 11105 -∞cmnf 11242 ℝ*cxr 11243 < clt 11244 ≤ cle 11245 (,)cioo 13320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-ioo 13324 |
This theorem is referenced by: pimdecfgtioo 45419 pimincfltioo 45420 |
Copyright terms: Public domain | W3C validator |