Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressioosup Structured version   Visualization version   GIF version

Theorem ressioosup 42673
Description: If the supremum does not belong to a set of reals, the set is a subset of the unbounded below, right-open interval, with upper bound equal to the supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
ressioosup.a (𝜑𝐴 ⊆ ℝ)
ressioosup.s 𝑆 = sup(𝐴, ℝ*, < )
ressioosup.n (𝜑 → ¬ 𝑆𝐴)
ressioosup.i 𝐼 = (-∞(,)𝑆)
Assertion
Ref Expression
ressioosup (𝜑𝐴𝐼)

Proof of Theorem ressioosup
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mnfxr 10788 . . . . . 6 -∞ ∈ ℝ*
21a1i 11 . . . . 5 ((𝜑𝑥𝐴) → -∞ ∈ ℝ*)
3 ressioosup.s . . . . . 6 𝑆 = sup(𝐴, ℝ*, < )
4 ressioosup.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
5 ressxr 10775 . . . . . . . . . 10 ℝ ⊆ ℝ*
65a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℝ*)
74, 6sstrd 3897 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ*)
87adantr 484 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ*)
98supxrcld 42235 . . . . . 6 ((𝜑𝑥𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
103, 9eqeltrid 2838 . . . . 5 ((𝜑𝑥𝐴) → 𝑆 ∈ ℝ*)
114adantr 484 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ)
12 simpr 488 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
1311, 12sseldd 3888 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
1413mnfltd 12614 . . . . 5 ((𝜑𝑥𝐴) → -∞ < 𝑥)
157sselda 3887 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ*)
16 supxrub 12812 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < ))
178, 12, 16syl2anc 587 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < ))
183a1i 11 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑆 = sup(𝐴, ℝ*, < ))
1918eqcomd 2745 . . . . . . 7 ((𝜑𝑥𝐴) → sup(𝐴, ℝ*, < ) = 𝑆)
2017, 19breqtrd 5066 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝑆)
21 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑆𝑥 = 𝑆)
2221eqcomd 2745 . . . . . . . . . . 11 (𝑥 = 𝑆𝑆 = 𝑥)
2322adantl 485 . . . . . . . . . 10 ((𝑥𝐴𝑥 = 𝑆) → 𝑆 = 𝑥)
24 simpl 486 . . . . . . . . . 10 ((𝑥𝐴𝑥 = 𝑆) → 𝑥𝐴)
2523, 24eqeltrd 2834 . . . . . . . . 9 ((𝑥𝐴𝑥 = 𝑆) → 𝑆𝐴)
2625adantll 714 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑥 = 𝑆) → 𝑆𝐴)
27 ressioosup.n . . . . . . . . 9 (𝜑 → ¬ 𝑆𝐴)
2827ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑥 = 𝑆) → ¬ 𝑆𝐴)
2926, 28pm2.65da 817 . . . . . . 7 ((𝜑𝑥𝐴) → ¬ 𝑥 = 𝑆)
3029neqned 2942 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝑆)
3115, 10, 20, 30xrleneltd 42440 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 < 𝑆)
322, 10, 13, 14, 31eliood 42616 . . . 4 ((𝜑𝑥𝐴) → 𝑥 ∈ (-∞(,)𝑆))
33 ressioosup.i . . . 4 𝐼 = (-∞(,)𝑆)
3432, 33eleqtrrdi 2845 . . 3 ((𝜑𝑥𝐴) → 𝑥𝐼)
3534ralrimiva 3097 . 2 (𝜑 → ∀𝑥𝐴 𝑥𝐼)
36 dfss3 3875 . 2 (𝐴𝐼 ↔ ∀𝑥𝐴 𝑥𝐼)
3735, 36sylibr 237 1 (𝜑𝐴𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1542  wcel 2114  wral 3054  wss 3853   class class class wbr 5040  (class class class)co 7182  supcsup 8989  cr 10626  -∞cmnf 10763  *cxr 10764   < clt 10765  cle 10766  (,)cioo 12833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704  ax-pre-sup 10705
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-po 5452  df-so 5453  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-1st 7726  df-2nd 7727  df-er 8332  df-en 8568  df-dom 8569  df-sdom 8570  df-sup 8991  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-ioo 12837
This theorem is referenced by:  pimdecfgtioo  43833  pimincfltioo  43834
  Copyright terms: Public domain W3C validator