Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ressioosup | Structured version Visualization version GIF version |
Description: If the supremum does not belong to a set of reals, the set is a subset of the unbounded below, right-open interval, with upper bound equal to the supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ressioosup.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
ressioosup.s | ⊢ 𝑆 = sup(𝐴, ℝ*, < ) |
ressioosup.n | ⊢ (𝜑 → ¬ 𝑆 ∈ 𝐴) |
ressioosup.i | ⊢ 𝐼 = (-∞(,)𝑆) |
Ref | Expression |
---|---|
ressioosup | ⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 10963 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
2 | 1 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -∞ ∈ ℝ*) |
3 | ressioosup.s | . . . . . 6 ⊢ 𝑆 = sup(𝐴, ℝ*, < ) | |
4 | ressioosup.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
5 | ressxr 10950 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ* | |
6 | 5 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → ℝ ⊆ ℝ*) |
7 | 4, 6 | sstrd 3927 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ*) |
9 | 8 | supxrcld 42546 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
10 | 3, 9 | eqeltrid 2843 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ∈ ℝ*) |
11 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
12 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
13 | 11, 12 | sseldd 3918 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
14 | 13 | mnfltd 12789 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -∞ < 𝑥) |
15 | 7 | sselda 3917 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
16 | supxrub 12987 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < )) | |
17 | 8, 12, 16 | syl2anc 583 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < )) |
18 | 3 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 = sup(𝐴, ℝ*, < )) |
19 | 18 | eqcomd 2744 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → sup(𝐴, ℝ*, < ) = 𝑆) |
20 | 17, 19 | breqtrd 5096 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ 𝑆) |
21 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑥 = 𝑆 → 𝑥 = 𝑆) | |
22 | 21 | eqcomd 2744 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑆 → 𝑆 = 𝑥) |
23 | 22 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑆 = 𝑥) |
24 | simpl 482 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑥 ∈ 𝐴) | |
25 | 23, 24 | eqeltrd 2839 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑆 ∈ 𝐴) |
26 | 25 | adantll 710 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 𝑆) → 𝑆 ∈ 𝐴) |
27 | ressioosup.n | . . . . . . . . 9 ⊢ (𝜑 → ¬ 𝑆 ∈ 𝐴) | |
28 | 27 | ad2antrr 722 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 𝑆) → ¬ 𝑆 ∈ 𝐴) |
29 | 26, 28 | pm2.65da 813 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 = 𝑆) |
30 | 29 | neqned 2949 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝑆) |
31 | 15, 10, 20, 30 | xrleneltd 42752 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 < 𝑆) |
32 | 2, 10, 13, 14, 31 | eliood 42926 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (-∞(,)𝑆)) |
33 | ressioosup.i | . . . 4 ⊢ 𝐼 = (-∞(,)𝑆) | |
34 | 32, 33 | eleqtrrdi 2850 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐼) |
35 | 34 | ralrimiva 3107 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐼) |
36 | dfss3 3905 | . 2 ⊢ (𝐴 ⊆ 𝐼 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐼) | |
37 | 35, 36 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 class class class wbr 5070 (class class class)co 7255 supcsup 9129 ℝcr 10801 -∞cmnf 10938 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 (,)cioo 13008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-ioo 13012 |
This theorem is referenced by: pimdecfgtioo 44141 pimincfltioo 44142 |
Copyright terms: Public domain | W3C validator |