Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressioosup Structured version   Visualization version   GIF version

Theorem ressioosup 40293
Description: If the supremum does not belong to a set of reals, the set is a subset of the unbounded below, right-open interval, with upper bound equal to the supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
ressioosup.a (𝜑𝐴 ⊆ ℝ)
ressioosup.s 𝑆 = sup(𝐴, ℝ*, < )
ressioosup.n (𝜑 → ¬ 𝑆𝐴)
ressioosup.i 𝐼 = (-∞(,)𝑆)
Assertion
Ref Expression
ressioosup (𝜑𝐴𝐼)

Proof of Theorem ressioosup
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mnfxr 10296 . . . . . 6 -∞ ∈ ℝ*
21a1i 11 . . . . 5 ((𝜑𝑥𝐴) → -∞ ∈ ℝ*)
3 ressioosup.s . . . . . 6 𝑆 = sup(𝐴, ℝ*, < )
4 ressioosup.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
5 ressxr 10283 . . . . . . . . . 10 ℝ ⊆ ℝ*
65a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℝ*)
74, 6sstrd 3762 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ*)
87adantr 466 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ*)
98supxrcld 39804 . . . . . 6 ((𝜑𝑥𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
103, 9syl5eqel 2854 . . . . 5 ((𝜑𝑥𝐴) → 𝑆 ∈ ℝ*)
114adantr 466 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ)
12 simpr 471 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
1311, 12sseldd 3753 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
1413mnfltd 12156 . . . . 5 ((𝜑𝑥𝐴) → -∞ < 𝑥)
157sselda 3752 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ*)
16 supxrub 12352 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < ))
178, 12, 16syl2anc 573 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < ))
183a1i 11 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑆 = sup(𝐴, ℝ*, < ))
1918eqcomd 2777 . . . . . . 7 ((𝜑𝑥𝐴) → sup(𝐴, ℝ*, < ) = 𝑆)
2017, 19breqtrd 4812 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝑆)
21 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑆𝑥 = 𝑆)
2221eqcomd 2777 . . . . . . . . . . 11 (𝑥 = 𝑆𝑆 = 𝑥)
2322adantl 467 . . . . . . . . . 10 ((𝑥𝐴𝑥 = 𝑆) → 𝑆 = 𝑥)
24 simpl 468 . . . . . . . . . 10 ((𝑥𝐴𝑥 = 𝑆) → 𝑥𝐴)
2523, 24eqeltrd 2850 . . . . . . . . 9 ((𝑥𝐴𝑥 = 𝑆) → 𝑆𝐴)
2625adantll 693 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑥 = 𝑆) → 𝑆𝐴)
27 ressioosup.n . . . . . . . . 9 (𝜑 → ¬ 𝑆𝐴)
2827ad2antrr 705 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑥 = 𝑆) → ¬ 𝑆𝐴)
2926, 28pm2.65da 818 . . . . . . 7 ((𝜑𝑥𝐴) → ¬ 𝑥 = 𝑆)
3029neqned 2950 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝑆)
3115, 10, 20, 30xrleneltd 40048 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 < 𝑆)
322, 10, 13, 14, 31eliood 40234 . . . 4 ((𝜑𝑥𝐴) → 𝑥 ∈ (-∞(,)𝑆))
33 ressioosup.i . . . 4 𝐼 = (-∞(,)𝑆)
3432, 33syl6eleqr 2861 . . 3 ((𝜑𝑥𝐴) → 𝑥𝐼)
3534ralrimiva 3115 . 2 (𝜑 → ∀𝑥𝐴 𝑥𝐼)
36 dfss3 3741 . 2 (𝐴𝐼 ↔ ∀𝑥𝐴 𝑥𝐼)
3735, 36sylibr 224 1 (𝜑𝐴𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1631  wcel 2145  wral 3061  wss 3723   class class class wbr 4786  (class class class)co 6791  supcsup 8500  cr 10135  -∞cmnf 10272  *cxr 10273   < clt 10274  cle 10275  (,)cioo 12373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-1st 7313  df-2nd 7314  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-sup 8502  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-ioo 12377
This theorem is referenced by:  pimdecfgtioo  41440  pimincfltioo  41441
  Copyright terms: Public domain W3C validator