Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ressioosup | Structured version Visualization version GIF version |
Description: If the supremum does not belong to a set of reals, the set is a subset of the unbounded below, right-open interval, with upper bound equal to the supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ressioosup.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
ressioosup.s | ⊢ 𝑆 = sup(𝐴, ℝ*, < ) |
ressioosup.n | ⊢ (𝜑 → ¬ 𝑆 ∈ 𝐴) |
ressioosup.i | ⊢ 𝐼 = (-∞(,)𝑆) |
Ref | Expression |
---|---|
ressioosup | ⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 10788 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
2 | 1 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -∞ ∈ ℝ*) |
3 | ressioosup.s | . . . . . 6 ⊢ 𝑆 = sup(𝐴, ℝ*, < ) | |
4 | ressioosup.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
5 | ressxr 10775 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ* | |
6 | 5 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → ℝ ⊆ ℝ*) |
7 | 4, 6 | sstrd 3897 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
8 | 7 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ*) |
9 | 8 | supxrcld 42235 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
10 | 3, 9 | eqeltrid 2838 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ∈ ℝ*) |
11 | 4 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
12 | simpr 488 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
13 | 11, 12 | sseldd 3888 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
14 | 13 | mnfltd 12614 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -∞ < 𝑥) |
15 | 7 | sselda 3887 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
16 | supxrub 12812 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < )) | |
17 | 8, 12, 16 | syl2anc 587 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < )) |
18 | 3 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 = sup(𝐴, ℝ*, < )) |
19 | 18 | eqcomd 2745 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → sup(𝐴, ℝ*, < ) = 𝑆) |
20 | 17, 19 | breqtrd 5066 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ 𝑆) |
21 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑥 = 𝑆 → 𝑥 = 𝑆) | |
22 | 21 | eqcomd 2745 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑆 → 𝑆 = 𝑥) |
23 | 22 | adantl 485 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑆 = 𝑥) |
24 | simpl 486 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑥 ∈ 𝐴) | |
25 | 23, 24 | eqeltrd 2834 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑆 ∈ 𝐴) |
26 | 25 | adantll 714 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 𝑆) → 𝑆 ∈ 𝐴) |
27 | ressioosup.n | . . . . . . . . 9 ⊢ (𝜑 → ¬ 𝑆 ∈ 𝐴) | |
28 | 27 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 𝑆) → ¬ 𝑆 ∈ 𝐴) |
29 | 26, 28 | pm2.65da 817 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 = 𝑆) |
30 | 29 | neqned 2942 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝑆) |
31 | 15, 10, 20, 30 | xrleneltd 42440 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 < 𝑆) |
32 | 2, 10, 13, 14, 31 | eliood 42616 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (-∞(,)𝑆)) |
33 | ressioosup.i | . . . 4 ⊢ 𝐼 = (-∞(,)𝑆) | |
34 | 32, 33 | eleqtrrdi 2845 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐼) |
35 | 34 | ralrimiva 3097 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐼) |
36 | dfss3 3875 | . 2 ⊢ (𝐴 ⊆ 𝐼 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐼) | |
37 | 35, 36 | sylibr 237 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3054 ⊆ wss 3853 class class class wbr 5040 (class class class)co 7182 supcsup 8989 ℝcr 10626 -∞cmnf 10763 ℝ*cxr 10764 < clt 10765 ≤ cle 10766 (,)cioo 12833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-cnex 10683 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 ax-pre-sup 10705 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-po 5452 df-so 5453 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-1st 7726 df-2nd 7727 df-er 8332 df-en 8568 df-dom 8569 df-sdom 8570 df-sup 8991 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-ioo 12837 |
This theorem is referenced by: pimdecfgtioo 43833 pimincfltioo 43834 |
Copyright terms: Public domain | W3C validator |