Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressioosup Structured version   Visualization version   GIF version

Theorem ressioosup 42983
Description: If the supremum does not belong to a set of reals, the set is a subset of the unbounded below, right-open interval, with upper bound equal to the supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
ressioosup.a (𝜑𝐴 ⊆ ℝ)
ressioosup.s 𝑆 = sup(𝐴, ℝ*, < )
ressioosup.n (𝜑 → ¬ 𝑆𝐴)
ressioosup.i 𝐼 = (-∞(,)𝑆)
Assertion
Ref Expression
ressioosup (𝜑𝐴𝐼)

Proof of Theorem ressioosup
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mnfxr 10963 . . . . . 6 -∞ ∈ ℝ*
21a1i 11 . . . . 5 ((𝜑𝑥𝐴) → -∞ ∈ ℝ*)
3 ressioosup.s . . . . . 6 𝑆 = sup(𝐴, ℝ*, < )
4 ressioosup.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
5 ressxr 10950 . . . . . . . . . 10 ℝ ⊆ ℝ*
65a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℝ*)
74, 6sstrd 3927 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ*)
87adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ*)
98supxrcld 42546 . . . . . 6 ((𝜑𝑥𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
103, 9eqeltrid 2843 . . . . 5 ((𝜑𝑥𝐴) → 𝑆 ∈ ℝ*)
114adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ)
12 simpr 484 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
1311, 12sseldd 3918 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
1413mnfltd 12789 . . . . 5 ((𝜑𝑥𝐴) → -∞ < 𝑥)
157sselda 3917 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ*)
16 supxrub 12987 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < ))
178, 12, 16syl2anc 583 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < ))
183a1i 11 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑆 = sup(𝐴, ℝ*, < ))
1918eqcomd 2744 . . . . . . 7 ((𝜑𝑥𝐴) → sup(𝐴, ℝ*, < ) = 𝑆)
2017, 19breqtrd 5096 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝑆)
21 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑆𝑥 = 𝑆)
2221eqcomd 2744 . . . . . . . . . . 11 (𝑥 = 𝑆𝑆 = 𝑥)
2322adantl 481 . . . . . . . . . 10 ((𝑥𝐴𝑥 = 𝑆) → 𝑆 = 𝑥)
24 simpl 482 . . . . . . . . . 10 ((𝑥𝐴𝑥 = 𝑆) → 𝑥𝐴)
2523, 24eqeltrd 2839 . . . . . . . . 9 ((𝑥𝐴𝑥 = 𝑆) → 𝑆𝐴)
2625adantll 710 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑥 = 𝑆) → 𝑆𝐴)
27 ressioosup.n . . . . . . . . 9 (𝜑 → ¬ 𝑆𝐴)
2827ad2antrr 722 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑥 = 𝑆) → ¬ 𝑆𝐴)
2926, 28pm2.65da 813 . . . . . . 7 ((𝜑𝑥𝐴) → ¬ 𝑥 = 𝑆)
3029neqned 2949 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝑆)
3115, 10, 20, 30xrleneltd 42752 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 < 𝑆)
322, 10, 13, 14, 31eliood 42926 . . . 4 ((𝜑𝑥𝐴) → 𝑥 ∈ (-∞(,)𝑆))
33 ressioosup.i . . . 4 𝐼 = (-∞(,)𝑆)
3432, 33eleqtrrdi 2850 . . 3 ((𝜑𝑥𝐴) → 𝑥𝐼)
3534ralrimiva 3107 . 2 (𝜑 → ∀𝑥𝐴 𝑥𝐼)
36 dfss3 3905 . 2 (𝐴𝐼 ↔ ∀𝑥𝐴 𝑥𝐼)
3735, 36sylibr 233 1 (𝜑𝐴𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883   class class class wbr 5070  (class class class)co 7255  supcsup 9129  cr 10801  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941  (,)cioo 13008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-ioo 13012
This theorem is referenced by:  pimdecfgtioo  44141  pimincfltioo  44142
  Copyright terms: Public domain W3C validator