Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ge0xrre | Structured version Visualization version GIF version |
Description: A nonnegative extended real that is not +∞ is a real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
ge0xrre | ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rge0ssre 13188 | . 2 ⊢ (0[,)+∞) ⊆ ℝ | |
2 | 0xr 11022 | . . . 4 ⊢ 0 ∈ ℝ* | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 0 ∈ ℝ*) |
4 | pnfxr 11029 | . . . 4 ⊢ +∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → +∞ ∈ ℝ*) |
6 | eliccxr 13167 | . . . 4 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ∈ ℝ*) | |
7 | 6 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ*) |
8 | 2 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ (0[,]+∞) → 0 ∈ ℝ*) |
9 | 4 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ (0[,]+∞) → +∞ ∈ ℝ*) |
10 | id 22 | . . . . 5 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ∈ (0[,]+∞)) | |
11 | iccgelb 13135 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴) | |
12 | 8, 9, 10, 11 | syl3anc 1370 | . . . 4 ⊢ (𝐴 ∈ (0[,]+∞) → 0 ≤ 𝐴) |
13 | 12 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 0 ≤ 𝐴) |
14 | pnfge 12866 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
15 | 6, 14 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ≤ +∞) |
16 | 15 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ≤ +∞) |
17 | simpr 485 | . . . 4 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ≠ +∞) | |
18 | 7, 5, 16, 17 | xrleneltd 42862 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 < +∞) |
19 | 3, 5, 7, 13, 18 | elicod 13129 | . 2 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ (0[,)+∞)) |
20 | 1, 19 | sselid 3919 | 1 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 (class class class)co 7275 ℝcr 10870 0cc0 10871 +∞cpnf 11006 ℝ*cxr 11008 ≤ cle 11010 [,)cico 13081 [,]cicc 13082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-addrcl 10932 ax-rnegex 10942 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-ico 13085 df-icc 13086 |
This theorem is referenced by: ge0lere 43070 ovolsplit 43529 sge0tsms 43918 sge0cl 43919 sge0isum 43965 sge0xaddlem1 43971 voliunsge0lem 44010 sge0hsphoire 44127 hoidmvlelem1 44133 hoidmvlelem4 44136 hspmbl 44167 |
Copyright terms: Public domain | W3C validator |