![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ge0xrre | Structured version Visualization version GIF version |
Description: A nonnegative extended real that is not +∞ is a real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
ge0xrre | ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rge0ssre 13439 | . 2 ⊢ (0[,)+∞) ⊆ ℝ | |
2 | 0xr 11265 | . . . 4 ⊢ 0 ∈ ℝ* | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 0 ∈ ℝ*) |
4 | pnfxr 11272 | . . . 4 ⊢ +∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → +∞ ∈ ℝ*) |
6 | eliccxr 13418 | . . . 4 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ∈ ℝ*) | |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ*) |
8 | 2 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ (0[,]+∞) → 0 ∈ ℝ*) |
9 | 4 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ (0[,]+∞) → +∞ ∈ ℝ*) |
10 | id 22 | . . . . 5 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ∈ (0[,]+∞)) | |
11 | iccgelb 13386 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴) | |
12 | 8, 9, 10, 11 | syl3anc 1368 | . . . 4 ⊢ (𝐴 ∈ (0[,]+∞) → 0 ≤ 𝐴) |
13 | 12 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 0 ≤ 𝐴) |
14 | pnfge 13116 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
15 | 6, 14 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ≤ +∞) |
16 | 15 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ≤ +∞) |
17 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ≠ +∞) | |
18 | 7, 5, 16, 17 | xrleneltd 44602 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 < +∞) |
19 | 3, 5, 7, 13, 18 | elicod 13380 | . 2 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ (0[,)+∞)) |
20 | 1, 19 | sselid 3975 | 1 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 ≠ wne 2934 class class class wbr 5141 (class class class)co 7405 ℝcr 11111 0cc0 11112 +∞cpnf 11249 ℝ*cxr 11251 ≤ cle 11253 [,)cico 13332 [,]cicc 13333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-addrcl 11173 ax-rnegex 11183 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-ico 13336 df-icc 13337 |
This theorem is referenced by: ge0lere 44814 ovolsplit 45273 sge0tsms 45665 sge0cl 45666 sge0isum 45712 sge0xaddlem1 45718 voliunsge0lem 45757 sge0hsphoire 45874 hoidmvlelem1 45880 hoidmvlelem4 45883 hspmbl 45914 |
Copyright terms: Public domain | W3C validator |