| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ge0xrre | Structured version Visualization version GIF version | ||
| Description: A nonnegative extended real that is not +∞ is a real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| ge0xrre | ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rge0ssre 13473 | . 2 ⊢ (0[,)+∞) ⊆ ℝ | |
| 2 | 0xr 11282 | . . . 4 ⊢ 0 ∈ ℝ* | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 0 ∈ ℝ*) |
| 4 | pnfxr 11289 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 5 | 4 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → +∞ ∈ ℝ*) |
| 6 | eliccxr 13452 | . . . 4 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ∈ ℝ*) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ*) |
| 8 | 2 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ (0[,]+∞) → 0 ∈ ℝ*) |
| 9 | 4 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ (0[,]+∞) → +∞ ∈ ℝ*) |
| 10 | id 22 | . . . . 5 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ∈ (0[,]+∞)) | |
| 11 | iccgelb 13419 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴) | |
| 12 | 8, 9, 10, 11 | syl3anc 1373 | . . . 4 ⊢ (𝐴 ∈ (0[,]+∞) → 0 ≤ 𝐴) |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 0 ≤ 𝐴) |
| 14 | pnfge 13146 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
| 15 | 6, 14 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ≤ +∞) |
| 16 | 15 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ≤ +∞) |
| 17 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ≠ +∞) | |
| 18 | 7, 5, 16, 17 | xrleneltd 45350 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 < +∞) |
| 19 | 3, 5, 7, 13, 18 | elicod 13412 | . 2 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ (0[,)+∞)) |
| 20 | 1, 19 | sselid 3956 | 1 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 (class class class)co 7405 ℝcr 11128 0cc0 11129 +∞cpnf 11266 ℝ*cxr 11268 ≤ cle 11270 [,)cico 13364 [,]cicc 13365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-addrcl 11190 ax-rnegex 11200 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-ico 13368 df-icc 13369 |
| This theorem is referenced by: ge0lere 45561 ovolsplit 46017 sge0tsms 46409 sge0cl 46410 sge0isum 46456 sge0xaddlem1 46462 voliunsge0lem 46501 sge0hsphoire 46618 hoidmvlelem1 46624 hoidmvlelem4 46627 hspmbl 46658 |
| Copyright terms: Public domain | W3C validator |