![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ge0xrre | Structured version Visualization version GIF version |
Description: A nonnegative extended real that is not +∞ is a real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
ge0xrre | ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rge0ssre 13460 | . 2 ⊢ (0[,)+∞) ⊆ ℝ | |
2 | 0xr 11286 | . . . 4 ⊢ 0 ∈ ℝ* | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 0 ∈ ℝ*) |
4 | pnfxr 11293 | . . . 4 ⊢ +∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → +∞ ∈ ℝ*) |
6 | eliccxr 13439 | . . . 4 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ∈ ℝ*) | |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ*) |
8 | 2 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ (0[,]+∞) → 0 ∈ ℝ*) |
9 | 4 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ (0[,]+∞) → +∞ ∈ ℝ*) |
10 | id 22 | . . . . 5 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ∈ (0[,]+∞)) | |
11 | iccgelb 13407 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴) | |
12 | 8, 9, 10, 11 | syl3anc 1369 | . . . 4 ⊢ (𝐴 ∈ (0[,]+∞) → 0 ≤ 𝐴) |
13 | 12 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 0 ≤ 𝐴) |
14 | pnfge 13137 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
15 | 6, 14 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ≤ +∞) |
16 | 15 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ≤ +∞) |
17 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ≠ +∞) | |
18 | 7, 5, 16, 17 | xrleneltd 44696 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 < +∞) |
19 | 3, 5, 7, 13, 18 | elicod 13401 | . 2 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ (0[,)+∞)) |
20 | 1, 19 | sselid 3977 | 1 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ≠ wne 2936 class class class wbr 5143 (class class class)co 7415 ℝcr 11132 0cc0 11133 +∞cpnf 11270 ℝ*cxr 11272 ≤ cle 11274 [,)cico 13353 [,]cicc 13354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-addrcl 11194 ax-rnegex 11204 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-po 5585 df-so 5586 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7418 df-oprab 7419 df-mpo 7420 df-1st 7988 df-2nd 7989 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-ico 13357 df-icc 13358 |
This theorem is referenced by: ge0lere 44908 ovolsplit 45367 sge0tsms 45759 sge0cl 45760 sge0isum 45806 sge0xaddlem1 45812 voliunsge0lem 45851 sge0hsphoire 45968 hoidmvlelem1 45974 hoidmvlelem4 45977 hspmbl 46008 |
Copyright terms: Public domain | W3C validator |