Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ge0xrre Structured version   Visualization version   GIF version

Theorem ge0xrre 45536
Description: A nonnegative extended real that is not +∞ is a real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
ge0xrre ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ)

Proof of Theorem ge0xrre
StepHypRef Expression
1 rge0ssre 13424 . 2 (0[,)+∞) ⊆ ℝ
2 0xr 11228 . . . 4 0 ∈ ℝ*
32a1i 11 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 0 ∈ ℝ*)
4 pnfxr 11235 . . . 4 +∞ ∈ ℝ*
54a1i 11 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → +∞ ∈ ℝ*)
6 eliccxr 13403 . . . 4 (𝐴 ∈ (0[,]+∞) → 𝐴 ∈ ℝ*)
76adantr 480 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ*)
82a1i 11 . . . . 5 (𝐴 ∈ (0[,]+∞) → 0 ∈ ℝ*)
94a1i 11 . . . . 5 (𝐴 ∈ (0[,]+∞) → +∞ ∈ ℝ*)
10 id 22 . . . . 5 (𝐴 ∈ (0[,]+∞) → 𝐴 ∈ (0[,]+∞))
11 iccgelb 13370 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴)
128, 9, 10, 11syl3anc 1373 . . . 4 (𝐴 ∈ (0[,]+∞) → 0 ≤ 𝐴)
1312adantr 480 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 0 ≤ 𝐴)
14 pnfge 13097 . . . . . 6 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
156, 14syl 17 . . . . 5 (𝐴 ∈ (0[,]+∞) → 𝐴 ≤ +∞)
1615adantr 480 . . . 4 ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ≤ +∞)
17 simpr 484 . . . 4 ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ≠ +∞)
187, 5, 16, 17xrleneltd 45326 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 < +∞)
193, 5, 7, 13, 18elicod 13363 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ (0[,)+∞))
201, 19sselid 3947 1 ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2926   class class class wbr 5110  (class class class)co 7390  cr 11074  0cc0 11075  +∞cpnf 11212  *cxr 11214  cle 11216  [,)cico 13315  [,]cicc 13316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-addrcl 11136  ax-rnegex 11146  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-ico 13319  df-icc 13320
This theorem is referenced by:  ge0lere  45537  ovolsplit  45993  sge0tsms  46385  sge0cl  46386  sge0isum  46432  sge0xaddlem1  46438  voliunsge0lem  46477  sge0hsphoire  46594  hoidmvlelem1  46600  hoidmvlelem4  46603  hspmbl  46634
  Copyright terms: Public domain W3C validator