![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashgt0 | Structured version Visualization version GIF version |
Description: The cardinality of a nonempty set is greater than zero. (Contributed by Thierry Arnoux, 2-Mar-2017.) |
Ref | Expression |
---|---|
hashgt0 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → 0 < (♯‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashge0 14404 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 0 ≤ (♯‘𝐴)) | |
2 | 1 | adantr 479 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → 0 ≤ (♯‘𝐴)) |
3 | hasheq0 14380 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) | |
4 | 3 | necon3bid 2975 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅)) |
5 | 4 | biimpar 476 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → (♯‘𝐴) ≠ 0) |
6 | 2, 5 | jca 510 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → (0 ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≠ 0)) |
7 | 0xr 11311 | . . . 4 ⊢ 0 ∈ ℝ* | |
8 | hashxrcl 14374 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (♯‘𝐴) ∈ ℝ*) | |
9 | xrltlen 13179 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ*) → (0 < (♯‘𝐴) ↔ (0 ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≠ 0))) | |
10 | 7, 8, 9 | sylancr 585 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (0 < (♯‘𝐴) ↔ (0 ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≠ 0))) |
11 | 10 | biimpar 476 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ (0 ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≠ 0)) → 0 < (♯‘𝐴)) |
12 | 6, 11 | syldan 589 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → 0 < (♯‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2099 ≠ wne 2930 ∅c0 4325 class class class wbr 5153 ‘cfv 6554 0cc0 11158 ℝ*cxr 11297 < clt 11298 ≤ cle 11299 ♯chash 14347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-oadd 8500 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-n0 12525 df-xnn0 12597 df-z 12611 df-uz 12875 df-fz 13539 df-hash 14348 |
This theorem is referenced by: hashgt0elexb 14419 clwwlkgt0 29919 clwwlkccat 29923 hashxpe 32711 cycpmco2lem5 33008 fldext2chn 33606 esumpinfval 33906 |
Copyright terms: Public domain | W3C validator |