Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashgt0 | Structured version Visualization version GIF version |
Description: The cardinality of a nonempty set is greater than zero. (Contributed by Thierry Arnoux, 2-Mar-2017.) |
Ref | Expression |
---|---|
hashgt0 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → 0 < (♯‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashge0 14207 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 0 ≤ (♯‘𝐴)) | |
2 | 1 | adantr 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → 0 ≤ (♯‘𝐴)) |
3 | hasheq0 14183 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) | |
4 | 3 | necon3bid 2986 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅)) |
5 | 4 | biimpar 479 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → (♯‘𝐴) ≠ 0) |
6 | 2, 5 | jca 513 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → (0 ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≠ 0)) |
7 | 0xr 11128 | . . . 4 ⊢ 0 ∈ ℝ* | |
8 | hashxrcl 14177 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (♯‘𝐴) ∈ ℝ*) | |
9 | xrltlen 12986 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ*) → (0 < (♯‘𝐴) ↔ (0 ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≠ 0))) | |
10 | 7, 8, 9 | sylancr 588 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (0 < (♯‘𝐴) ↔ (0 ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≠ 0))) |
11 | 10 | biimpar 479 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ (0 ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≠ 0)) → 0 < (♯‘𝐴)) |
12 | 6, 11 | syldan 592 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → 0 < (♯‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2106 ≠ wne 2941 ∅c0 4274 class class class wbr 5097 ‘cfv 6484 0cc0 10977 ℝ*cxr 11114 < clt 11115 ≤ cle 11116 ♯chash 14150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-oadd 8376 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-card 9801 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-n0 12340 df-xnn0 12412 df-z 12426 df-uz 12689 df-fz 13346 df-hash 14151 |
This theorem is referenced by: hashgt0elexb 14222 clwwlkgt0 28638 clwwlkccat 28642 hashxpe 31412 cycpmco2lem5 31682 esumpinfval 32337 |
Copyright terms: Public domain | W3C validator |