MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgt0 Structured version   Visualization version   GIF version

Theorem hashgt0 14302
Description: The cardinality of a nonempty set is greater than zero. (Contributed by Thierry Arnoux, 2-Mar-2017.)
Assertion
Ref Expression
hashgt0 ((𝐴𝑉𝐴 ≠ ∅) → 0 < (♯‘𝐴))

Proof of Theorem hashgt0
StepHypRef Expression
1 hashge0 14301 . . . 4 (𝐴𝑉 → 0 ≤ (♯‘𝐴))
21adantr 480 . . 3 ((𝐴𝑉𝐴 ≠ ∅) → 0 ≤ (♯‘𝐴))
3 hasheq0 14277 . . . . 5 (𝐴𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
43necon3bid 2973 . . . 4 (𝐴𝑉 → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅))
54biimpar 477 . . 3 ((𝐴𝑉𝐴 ≠ ∅) → (♯‘𝐴) ≠ 0)
62, 5jca 511 . 2 ((𝐴𝑉𝐴 ≠ ∅) → (0 ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≠ 0))
7 0xr 11170 . . . 4 0 ∈ ℝ*
8 hashxrcl 14271 . . . 4 (𝐴𝑉 → (♯‘𝐴) ∈ ℝ*)
9 xrltlen 13051 . . . 4 ((0 ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ*) → (0 < (♯‘𝐴) ↔ (0 ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≠ 0)))
107, 8, 9sylancr 587 . . 3 (𝐴𝑉 → (0 < (♯‘𝐴) ↔ (0 ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≠ 0)))
1110biimpar 477 . 2 ((𝐴𝑉 ∧ (0 ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≠ 0)) → 0 < (♯‘𝐴))
126, 11syldan 591 1 ((𝐴𝑉𝐴 ≠ ∅) → 0 < (♯‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2113  wne 2929  c0 4282   class class class wbr 5095  cfv 6489  0cc0 11017  *cxr 11156   < clt 11157  cle 11158  chash 14244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393  df-xnn0 12466  df-z 12480  df-uz 12743  df-fz 13415  df-hash 14245
This theorem is referenced by:  hashgt0elexb  14316  clwwlkgt0  29987  clwwlkccat  29991  hashxpe  32815  cycpmco2lem5  33140  fldext2chn  33813  constrextdg2lem  33833  esumpinfval  34158
  Copyright terms: Public domain W3C validator