| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssfzunsn | Structured version Visualization version GIF version | ||
| Description: A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 8-Jun-2021.) (Proof shortened by AV, 13-Nov-2021.) |
| Ref | Expression |
|---|---|
| ssfzunsn | ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (𝑀...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝑆 ⊆ (𝑀...𝑁)) | |
| 2 | eluzel2 12737 | . . . 4 ⊢ (𝐼 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 3 | 2 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℤ) |
| 4 | simp2 1137 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) | |
| 5 | eluzelz 12742 | . . . 4 ⊢ (𝐼 ∈ (ℤ≥‘𝑀) → 𝐼 ∈ ℤ) | |
| 6 | 5 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝐼 ∈ ℤ) |
| 7 | ssfzunsnext 13469 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼 ≤ 𝑀, 𝐼, 𝑀)...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) | |
| 8 | 1, 3, 4, 6, 7 | syl13anc 1374 | . 2 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼 ≤ 𝑀, 𝐼, 𝑀)...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) |
| 9 | eluz2 12738 | . . . . 5 ⊢ (𝐼 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼)) | |
| 10 | zre 12472 | . . . . . . . . 9 ⊢ (𝐼 ∈ ℤ → 𝐼 ∈ ℝ) | |
| 11 | 10 | rexrd 11162 | . . . . . . . 8 ⊢ (𝐼 ∈ ℤ → 𝐼 ∈ ℝ*) |
| 12 | 11 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → 𝐼 ∈ ℝ*) |
| 13 | zre 12472 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 14 | 13 | rexrd 11162 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ*) |
| 15 | 14 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → 𝑀 ∈ ℝ*) |
| 16 | simp3 1138 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → 𝑀 ≤ 𝐼) | |
| 17 | xrmineq 13079 | . . . . . . 7 ⊢ ((𝐼 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝐼) → if(𝐼 ≤ 𝑀, 𝐼, 𝑀) = 𝑀) | |
| 18 | 12, 15, 16, 17 | syl3anc 1373 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → if(𝐼 ≤ 𝑀, 𝐼, 𝑀) = 𝑀) |
| 19 | 18 | eqcomd 2737 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → 𝑀 = if(𝐼 ≤ 𝑀, 𝐼, 𝑀)) |
| 20 | 9, 19 | sylbi 217 | . . . 4 ⊢ (𝐼 ∈ (ℤ≥‘𝑀) → 𝑀 = if(𝐼 ≤ 𝑀, 𝐼, 𝑀)) |
| 21 | 20 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝑀 = if(𝐼 ≤ 𝑀, 𝐼, 𝑀)) |
| 22 | 21 | oveq1d 7361 | . 2 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑀...if(𝐼 ≤ 𝑁, 𝑁, 𝐼)) = (if(𝐼 ≤ 𝑀, 𝐼, 𝑀)...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) |
| 23 | 8, 22 | sseqtrrd 3967 | 1 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (𝑀...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 ⊆ wss 3897 ifcif 4472 {csn 4573 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℝ*cxr 11145 ≤ cle 11147 ℤcz 12468 ℤ≥cuz 12732 ...cfz 13407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-neg 11347 df-z 12469 df-uz 12733 df-fz 13408 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |