| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssfzunsn | Structured version Visualization version GIF version | ||
| Description: A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 8-Jun-2021.) (Proof shortened by AV, 13-Nov-2021.) |
| Ref | Expression |
|---|---|
| ssfzunsn | ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (𝑀...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝑆 ⊆ (𝑀...𝑁)) | |
| 2 | eluzel2 12866 | . . . 4 ⊢ (𝐼 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 3 | 2 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℤ) |
| 4 | simp2 1137 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) | |
| 5 | eluzelz 12871 | . . . 4 ⊢ (𝐼 ∈ (ℤ≥‘𝑀) → 𝐼 ∈ ℤ) | |
| 6 | 5 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝐼 ∈ ℤ) |
| 7 | ssfzunsnext 13592 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼 ≤ 𝑀, 𝐼, 𝑀)...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) | |
| 8 | 1, 3, 4, 6, 7 | syl13anc 1373 | . 2 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼 ≤ 𝑀, 𝐼, 𝑀)...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) |
| 9 | eluz2 12867 | . . . . 5 ⊢ (𝐼 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼)) | |
| 10 | zre 12601 | . . . . . . . . 9 ⊢ (𝐼 ∈ ℤ → 𝐼 ∈ ℝ) | |
| 11 | 10 | rexrd 11294 | . . . . . . . 8 ⊢ (𝐼 ∈ ℤ → 𝐼 ∈ ℝ*) |
| 12 | 11 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → 𝐼 ∈ ℝ*) |
| 13 | zre 12601 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 14 | 13 | rexrd 11294 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ*) |
| 15 | 14 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → 𝑀 ∈ ℝ*) |
| 16 | simp3 1138 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → 𝑀 ≤ 𝐼) | |
| 17 | xrmineq 13205 | . . . . . . 7 ⊢ ((𝐼 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝐼) → if(𝐼 ≤ 𝑀, 𝐼, 𝑀) = 𝑀) | |
| 18 | 12, 15, 16, 17 | syl3anc 1372 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → if(𝐼 ≤ 𝑀, 𝐼, 𝑀) = 𝑀) |
| 19 | 18 | eqcomd 2740 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → 𝑀 = if(𝐼 ≤ 𝑀, 𝐼, 𝑀)) |
| 20 | 9, 19 | sylbi 217 | . . . 4 ⊢ (𝐼 ∈ (ℤ≥‘𝑀) → 𝑀 = if(𝐼 ≤ 𝑀, 𝐼, 𝑀)) |
| 21 | 20 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝑀 = if(𝐼 ≤ 𝑀, 𝐼, 𝑀)) |
| 22 | 21 | oveq1d 7429 | . 2 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑀...if(𝐼 ≤ 𝑁, 𝑁, 𝐼)) = (if(𝐼 ≤ 𝑀, 𝐼, 𝑀)...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) |
| 23 | 8, 22 | sseqtrrd 4003 | 1 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (𝑀...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∪ cun 3931 ⊆ wss 3933 ifcif 4507 {csn 4608 class class class wbr 5125 ‘cfv 6542 (class class class)co 7414 ℝ*cxr 11277 ≤ cle 11279 ℤcz 12597 ℤ≥cuz 12861 ...cfz 13530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-pre-lttri 11212 ax-pre-lttrn 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-po 5574 df-so 5575 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-neg 11478 df-z 12598 df-uz 12862 df-fz 13531 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |