![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssfzunsn | Structured version Visualization version GIF version |
Description: A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 8-Jun-2021.) (Proof shortened by AV, 13-Nov-2021.) |
Ref | Expression |
---|---|
ssfzunsn | ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (𝑀...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝑆 ⊆ (𝑀...𝑁)) | |
2 | eluzel2 12881 | . . . 4 ⊢ (𝐼 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
3 | 2 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℤ) |
4 | simp2 1136 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) | |
5 | eluzelz 12886 | . . . 4 ⊢ (𝐼 ∈ (ℤ≥‘𝑀) → 𝐼 ∈ ℤ) | |
6 | 5 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝐼 ∈ ℤ) |
7 | ssfzunsnext 13606 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼 ≤ 𝑀, 𝐼, 𝑀)...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) | |
8 | 1, 3, 4, 6, 7 | syl13anc 1371 | . 2 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼 ≤ 𝑀, 𝐼, 𝑀)...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) |
9 | eluz2 12882 | . . . . 5 ⊢ (𝐼 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼)) | |
10 | zre 12615 | . . . . . . . . 9 ⊢ (𝐼 ∈ ℤ → 𝐼 ∈ ℝ) | |
11 | 10 | rexrd 11309 | . . . . . . . 8 ⊢ (𝐼 ∈ ℤ → 𝐼 ∈ ℝ*) |
12 | 11 | 3ad2ant2 1133 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → 𝐼 ∈ ℝ*) |
13 | zre 12615 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
14 | 13 | rexrd 11309 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ*) |
15 | 14 | 3ad2ant1 1132 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → 𝑀 ∈ ℝ*) |
16 | simp3 1137 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → 𝑀 ≤ 𝐼) | |
17 | xrmineq 13219 | . . . . . . 7 ⊢ ((𝐼 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝐼) → if(𝐼 ≤ 𝑀, 𝐼, 𝑀) = 𝑀) | |
18 | 12, 15, 16, 17 | syl3anc 1370 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → if(𝐼 ≤ 𝑀, 𝐼, 𝑀) = 𝑀) |
19 | 18 | eqcomd 2741 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → 𝑀 = if(𝐼 ≤ 𝑀, 𝐼, 𝑀)) |
20 | 9, 19 | sylbi 217 | . . . 4 ⊢ (𝐼 ∈ (ℤ≥‘𝑀) → 𝑀 = if(𝐼 ≤ 𝑀, 𝐼, 𝑀)) |
21 | 20 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝑀 = if(𝐼 ≤ 𝑀, 𝐼, 𝑀)) |
22 | 21 | oveq1d 7446 | . 2 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑀...if(𝐼 ≤ 𝑁, 𝑁, 𝐼)) = (if(𝐼 ≤ 𝑀, 𝐼, 𝑀)...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) |
23 | 8, 22 | sseqtrrd 4037 | 1 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (𝑀...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∪ cun 3961 ⊆ wss 3963 ifcif 4531 {csn 4631 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ℝ*cxr 11292 ≤ cle 11294 ℤcz 12611 ℤ≥cuz 12876 ...cfz 13544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-neg 11493 df-z 12612 df-uz 12877 df-fz 13545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |