| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssfzunsn | Structured version Visualization version GIF version | ||
| Description: A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 8-Jun-2021.) (Proof shortened by AV, 13-Nov-2021.) |
| Ref | Expression |
|---|---|
| ssfzunsn | ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (𝑀...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝑆 ⊆ (𝑀...𝑁)) | |
| 2 | eluzel2 12862 | . . . 4 ⊢ (𝐼 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 3 | 2 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℤ) |
| 4 | simp2 1137 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) | |
| 5 | eluzelz 12867 | . . . 4 ⊢ (𝐼 ∈ (ℤ≥‘𝑀) → 𝐼 ∈ ℤ) | |
| 6 | 5 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝐼 ∈ ℤ) |
| 7 | ssfzunsnext 13591 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼 ≤ 𝑀, 𝐼, 𝑀)...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) | |
| 8 | 1, 3, 4, 6, 7 | syl13anc 1374 | . 2 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼 ≤ 𝑀, 𝐼, 𝑀)...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) |
| 9 | eluz2 12863 | . . . . 5 ⊢ (𝐼 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼)) | |
| 10 | zre 12597 | . . . . . . . . 9 ⊢ (𝐼 ∈ ℤ → 𝐼 ∈ ℝ) | |
| 11 | 10 | rexrd 11290 | . . . . . . . 8 ⊢ (𝐼 ∈ ℤ → 𝐼 ∈ ℝ*) |
| 12 | 11 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → 𝐼 ∈ ℝ*) |
| 13 | zre 12597 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 14 | 13 | rexrd 11290 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ*) |
| 15 | 14 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → 𝑀 ∈ ℝ*) |
| 16 | simp3 1138 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → 𝑀 ≤ 𝐼) | |
| 17 | xrmineq 13201 | . . . . . . 7 ⊢ ((𝐼 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝐼) → if(𝐼 ≤ 𝑀, 𝐼, 𝑀) = 𝑀) | |
| 18 | 12, 15, 16, 17 | syl3anc 1373 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → if(𝐼 ≤ 𝑀, 𝐼, 𝑀) = 𝑀) |
| 19 | 18 | eqcomd 2742 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → 𝑀 = if(𝐼 ≤ 𝑀, 𝐼, 𝑀)) |
| 20 | 9, 19 | sylbi 217 | . . . 4 ⊢ (𝐼 ∈ (ℤ≥‘𝑀) → 𝑀 = if(𝐼 ≤ 𝑀, 𝐼, 𝑀)) |
| 21 | 20 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝑀 = if(𝐼 ≤ 𝑀, 𝐼, 𝑀)) |
| 22 | 21 | oveq1d 7425 | . 2 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑀...if(𝐼 ≤ 𝑁, 𝑁, 𝐼)) = (if(𝐼 ≤ 𝑀, 𝐼, 𝑀)...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) |
| 23 | 8, 22 | sseqtrrd 4001 | 1 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (𝑀...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3929 ⊆ wss 3931 ifcif 4505 {csn 4606 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ℝ*cxr 11273 ≤ cle 11275 ℤcz 12593 ℤ≥cuz 12857 ...cfz 13529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-neg 11474 df-z 12594 df-uz 12858 df-fz 13530 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |