![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssfzunsn | Structured version Visualization version GIF version |
Description: A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 8-Jun-2021.) (Proof shortened by AV, 13-Nov-2021.) |
Ref | Expression |
---|---|
ssfzunsn | ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (𝑀...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1116 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝑆 ⊆ (𝑀...𝑁)) | |
2 | eluzel2 12061 | . . . 4 ⊢ (𝐼 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
3 | 2 | 3ad2ant3 1115 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℤ) |
4 | simp2 1117 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) | |
5 | eluzelz 12066 | . . . 4 ⊢ (𝐼 ∈ (ℤ≥‘𝑀) → 𝐼 ∈ ℤ) | |
6 | 5 | 3ad2ant3 1115 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝐼 ∈ ℤ) |
7 | ssfzunsnext 12766 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼 ≤ 𝑀, 𝐼, 𝑀)...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) | |
8 | 1, 3, 4, 6, 7 | syl13anc 1352 | . 2 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼 ≤ 𝑀, 𝐼, 𝑀)...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) |
9 | eluz2 12062 | . . . . 5 ⊢ (𝐼 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼)) | |
10 | zre 11795 | . . . . . . . . 9 ⊢ (𝐼 ∈ ℤ → 𝐼 ∈ ℝ) | |
11 | 10 | rexrd 10488 | . . . . . . . 8 ⊢ (𝐼 ∈ ℤ → 𝐼 ∈ ℝ*) |
12 | 11 | 3ad2ant2 1114 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → 𝐼 ∈ ℝ*) |
13 | zre 11795 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
14 | 13 | rexrd 10488 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ*) |
15 | 14 | 3ad2ant1 1113 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → 𝑀 ∈ ℝ*) |
16 | simp3 1118 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → 𝑀 ≤ 𝐼) | |
17 | xrmineq 12388 | . . . . . . 7 ⊢ ((𝐼 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝐼) → if(𝐼 ≤ 𝑀, 𝐼, 𝑀) = 𝑀) | |
18 | 12, 15, 16, 17 | syl3anc 1351 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → if(𝐼 ≤ 𝑀, 𝐼, 𝑀) = 𝑀) |
19 | 18 | eqcomd 2778 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼) → 𝑀 = if(𝐼 ≤ 𝑀, 𝐼, 𝑀)) |
20 | 9, 19 | sylbi 209 | . . . 4 ⊢ (𝐼 ∈ (ℤ≥‘𝑀) → 𝑀 = if(𝐼 ≤ 𝑀, 𝐼, 𝑀)) |
21 | 20 | 3ad2ant3 1115 | . . 3 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → 𝑀 = if(𝐼 ≤ 𝑀, 𝐼, 𝑀)) |
22 | 21 | oveq1d 6989 | . 2 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑀...if(𝐼 ≤ 𝑁, 𝑁, 𝐼)) = (if(𝐼 ≤ 𝑀, 𝐼, 𝑀)...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) |
23 | 8, 22 | sseqtr4d 3892 | 1 ⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (𝑀...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ∪ cun 3821 ⊆ wss 3823 ifcif 4344 {csn 4435 class class class wbr 4925 ‘cfv 6185 (class class class)co 6974 ℝ*cxr 10471 ≤ cle 10473 ℤcz 11791 ℤ≥cuz 12056 ...cfz 12706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-pre-lttri 10407 ax-pre-lttrn 10408 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-po 5322 df-so 5323 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-ov 6977 df-oprab 6978 df-mpo 6979 df-1st 7499 df-2nd 7500 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-neg 10671 df-z 11792 df-uz 12057 df-fz 12707 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |