Proof of Theorem ioondisj2
Step | Hyp | Ref
| Expression |
1 | | simpll1 1211 |
. . 3
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → 𝐴 ∈
ℝ*) |
2 | | simpll2 1212 |
. . 3
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → 𝐵 ∈
ℝ*) |
3 | | simplr1 1214 |
. . 3
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → 𝐶 ∈
ℝ*) |
4 | | simplr2 1215 |
. . 3
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → 𝐷 ∈
ℝ*) |
5 | | iooin 13113 |
. . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*))
→ ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)(,)if(𝐵 ≤ 𝐷, 𝐵, 𝐷))) |
6 | 1, 2, 3, 4, 5 | syl22anc 836 |
. 2
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)(,)if(𝐵 ≤ 𝐷, 𝐵, 𝐷))) |
7 | | simprr 770 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → 𝐷 ≤ 𝐵) |
8 | | xrmineq 12914 |
. . . . 5
⊢ ((𝐵 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐷
≤ 𝐵) → if(𝐵 ≤ 𝐷, 𝐵, 𝐷) = 𝐷) |
9 | 2, 4, 7, 8 | syl3anc 1370 |
. . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → if(𝐵 ≤ 𝐷, 𝐵, 𝐷) = 𝐷) |
10 | 9 | oveq2d 7291 |
. . 3
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)(,)if(𝐵 ≤ 𝐷, 𝐵, 𝐷)) = (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)(,)𝐷)) |
11 | | simpr 485 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*
∧ 𝐶 < 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) ∧ 𝐴 ≤ 𝐶) → 𝐴 ≤ 𝐶) |
12 | 11 | iftrued 4467 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*
∧ 𝐶 < 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) ∧ 𝐴 ≤ 𝐶) → if(𝐴 ≤ 𝐶, 𝐶, 𝐴) = 𝐶) |
13 | | simplr3 1216 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → 𝐶 < 𝐷) |
14 | 13 | adantr 481 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*
∧ 𝐶 < 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) ∧ 𝐴 ≤ 𝐶) → 𝐶 < 𝐷) |
15 | 12, 14 | eqbrtrd 5096 |
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*
∧ 𝐶 < 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) ∧ 𝐴 ≤ 𝐶) → if(𝐴 ≤ 𝐶, 𝐶, 𝐴) < 𝐷) |
16 | | simpr 485 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*
∧ 𝐶 < 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) ∧ ¬ 𝐴 ≤ 𝐶) → ¬ 𝐴 ≤ 𝐶) |
17 | 16 | iffalsed 4470 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*
∧ 𝐶 < 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) ∧ ¬ 𝐴 ≤ 𝐶) → if(𝐴 ≤ 𝐶, 𝐶, 𝐴) = 𝐴) |
18 | | simplrl 774 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*
∧ 𝐶 < 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) ∧ ¬ 𝐴 ≤ 𝐶) → 𝐴 < 𝐷) |
19 | 17, 18 | eqbrtrd 5096 |
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*
∧ 𝐶 < 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) ∧ ¬ 𝐴 ≤ 𝐶) → if(𝐴 ≤ 𝐶, 𝐶, 𝐴) < 𝐷) |
20 | 15, 19 | pm2.61dan 810 |
. . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → if(𝐴 ≤ 𝐶, 𝐶, 𝐴) < 𝐷) |
21 | 3, 1 | ifcld 4505 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → if(𝐴 ≤ 𝐶, 𝐶, 𝐴) ∈
ℝ*) |
22 | | ioon0 13105 |
. . . . 5
⊢
((if(𝐴 ≤ 𝐶, 𝐶, 𝐴) ∈ ℝ* ∧ 𝐷 ∈ ℝ*)
→ ((if(𝐴 ≤ 𝐶, 𝐶, 𝐴)(,)𝐷) ≠ ∅ ↔ if(𝐴 ≤ 𝐶, 𝐶, 𝐴) < 𝐷)) |
23 | 21, 4, 22 | syl2anc 584 |
. . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → ((if(𝐴 ≤ 𝐶, 𝐶, 𝐴)(,)𝐷) ≠ ∅ ↔ if(𝐴 ≤ 𝐶, 𝐶, 𝐴) < 𝐷)) |
24 | 20, 23 | mpbird 256 |
. . 3
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)(,)𝐷) ≠ ∅) |
25 | 10, 24 | eqnetrd 3011 |
. 2
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)(,)if(𝐵 ≤ 𝐷, 𝐵, 𝐷)) ≠ ∅) |
26 | 6, 25 | eqnetrd 3011 |
1
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ≠ ∅) |