Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioondisj2 Structured version   Visualization version   GIF version

Theorem ioondisj2 45491
Description: A condition for two open intervals not to be disjoint. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
ioondisj2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ≠ ∅)

Proof of Theorem ioondisj2
StepHypRef Expression
1 simpll1 1213 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → 𝐴 ∈ ℝ*)
2 simpll2 1214 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → 𝐵 ∈ ℝ*)
3 simplr1 1216 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → 𝐶 ∈ ℝ*)
4 simplr2 1217 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → 𝐷 ∈ ℝ*)
5 iooin 13340 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (if(𝐴𝐶, 𝐶, 𝐴)(,)if(𝐵𝐷, 𝐵, 𝐷)))
61, 2, 3, 4, 5syl22anc 838 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (if(𝐴𝐶, 𝐶, 𝐴)(,)if(𝐵𝐷, 𝐵, 𝐷)))
7 simprr 772 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → 𝐷𝐵)
8 xrmineq 13140 . . . . 5 ((𝐵 ∈ ℝ*𝐷 ∈ ℝ*𝐷𝐵) → if(𝐵𝐷, 𝐵, 𝐷) = 𝐷)
92, 4, 7, 8syl3anc 1373 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → if(𝐵𝐷, 𝐵, 𝐷) = 𝐷)
109oveq2d 7403 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → (if(𝐴𝐶, 𝐶, 𝐴)(,)if(𝐵𝐷, 𝐵, 𝐷)) = (if(𝐴𝐶, 𝐶, 𝐴)(,)𝐷))
11 simpr 484 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ 𝐴𝐶) → 𝐴𝐶)
1211iftrued 4496 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ 𝐴𝐶) → if(𝐴𝐶, 𝐶, 𝐴) = 𝐶)
13 simplr3 1218 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → 𝐶 < 𝐷)
1413adantr 480 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ 𝐴𝐶) → 𝐶 < 𝐷)
1512, 14eqbrtrd 5129 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ 𝐴𝐶) → if(𝐴𝐶, 𝐶, 𝐴) < 𝐷)
16 simpr 484 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ ¬ 𝐴𝐶) → ¬ 𝐴𝐶)
1716iffalsed 4499 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ ¬ 𝐴𝐶) → if(𝐴𝐶, 𝐶, 𝐴) = 𝐴)
18 simplrl 776 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ ¬ 𝐴𝐶) → 𝐴 < 𝐷)
1917, 18eqbrtrd 5129 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ ¬ 𝐴𝐶) → if(𝐴𝐶, 𝐶, 𝐴) < 𝐷)
2015, 19pm2.61dan 812 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → if(𝐴𝐶, 𝐶, 𝐴) < 𝐷)
213, 1ifcld 4535 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → if(𝐴𝐶, 𝐶, 𝐴) ∈ ℝ*)
22 ioon0 13332 . . . . 5 ((if(𝐴𝐶, 𝐶, 𝐴) ∈ ℝ*𝐷 ∈ ℝ*) → ((if(𝐴𝐶, 𝐶, 𝐴)(,)𝐷) ≠ ∅ ↔ if(𝐴𝐶, 𝐶, 𝐴) < 𝐷))
2321, 4, 22syl2anc 584 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → ((if(𝐴𝐶, 𝐶, 𝐴)(,)𝐷) ≠ ∅ ↔ if(𝐴𝐶, 𝐶, 𝐴) < 𝐷))
2420, 23mpbird 257 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → (if(𝐴𝐶, 𝐶, 𝐴)(,)𝐷) ≠ ∅)
2510, 24eqnetrd 2992 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → (if(𝐴𝐶, 𝐶, 𝐴)(,)if(𝐵𝐷, 𝐵, 𝐷)) ≠ ∅)
266, 25eqnetrd 2992 1 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cin 3913  c0 4296  ifcif 4488   class class class wbr 5107  (class class class)co 7387  *cxr 11207   < clt 11208  cle 11209  (,)cioo 13306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-ioo 13310
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator