Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioondisj2 Structured version   Visualization version   GIF version

Theorem ioondisj2 45446
Description: A condition for two open intervals not to be disjoint. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
ioondisj2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ≠ ∅)

Proof of Theorem ioondisj2
StepHypRef Expression
1 simpll1 1211 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → 𝐴 ∈ ℝ*)
2 simpll2 1212 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → 𝐵 ∈ ℝ*)
3 simplr1 1214 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → 𝐶 ∈ ℝ*)
4 simplr2 1215 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → 𝐷 ∈ ℝ*)
5 iooin 13418 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (if(𝐴𝐶, 𝐶, 𝐴)(,)if(𝐵𝐷, 𝐵, 𝐷)))
61, 2, 3, 4, 5syl22anc 839 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (if(𝐴𝐶, 𝐶, 𝐴)(,)if(𝐵𝐷, 𝐵, 𝐷)))
7 simprr 773 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → 𝐷𝐵)
8 xrmineq 13219 . . . . 5 ((𝐵 ∈ ℝ*𝐷 ∈ ℝ*𝐷𝐵) → if(𝐵𝐷, 𝐵, 𝐷) = 𝐷)
92, 4, 7, 8syl3anc 1370 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → if(𝐵𝐷, 𝐵, 𝐷) = 𝐷)
109oveq2d 7447 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → (if(𝐴𝐶, 𝐶, 𝐴)(,)if(𝐵𝐷, 𝐵, 𝐷)) = (if(𝐴𝐶, 𝐶, 𝐴)(,)𝐷))
11 simpr 484 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ 𝐴𝐶) → 𝐴𝐶)
1211iftrued 4539 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ 𝐴𝐶) → if(𝐴𝐶, 𝐶, 𝐴) = 𝐶)
13 simplr3 1216 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → 𝐶 < 𝐷)
1413adantr 480 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ 𝐴𝐶) → 𝐶 < 𝐷)
1512, 14eqbrtrd 5170 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ 𝐴𝐶) → if(𝐴𝐶, 𝐶, 𝐴) < 𝐷)
16 simpr 484 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ ¬ 𝐴𝐶) → ¬ 𝐴𝐶)
1716iffalsed 4542 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ ¬ 𝐴𝐶) → if(𝐴𝐶, 𝐶, 𝐴) = 𝐴)
18 simplrl 777 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ ¬ 𝐴𝐶) → 𝐴 < 𝐷)
1917, 18eqbrtrd 5170 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ ¬ 𝐴𝐶) → if(𝐴𝐶, 𝐶, 𝐴) < 𝐷)
2015, 19pm2.61dan 813 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → if(𝐴𝐶, 𝐶, 𝐴) < 𝐷)
213, 1ifcld 4577 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → if(𝐴𝐶, 𝐶, 𝐴) ∈ ℝ*)
22 ioon0 13410 . . . . 5 ((if(𝐴𝐶, 𝐶, 𝐴) ∈ ℝ*𝐷 ∈ ℝ*) → ((if(𝐴𝐶, 𝐶, 𝐴)(,)𝐷) ≠ ∅ ↔ if(𝐴𝐶, 𝐶, 𝐴) < 𝐷))
2321, 4, 22syl2anc 584 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → ((if(𝐴𝐶, 𝐶, 𝐴)(,)𝐷) ≠ ∅ ↔ if(𝐴𝐶, 𝐶, 𝐴) < 𝐷))
2420, 23mpbird 257 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → (if(𝐴𝐶, 𝐶, 𝐴)(,)𝐷) ≠ ∅)
2510, 24eqnetrd 3006 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → (if(𝐴𝐶, 𝐶, 𝐴)(,)if(𝐵𝐷, 𝐵, 𝐷)) ≠ ∅)
266, 25eqnetrd 3006 1 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  cin 3962  c0 4339  ifcif 4531   class class class wbr 5148  (class class class)co 7431  *cxr 11292   < clt 11293  cle 11294  (,)cioo 13384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-ioo 13388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator