Proof of Theorem ioondisj2
| Step | Hyp | Ref
| Expression |
| 1 | | simpll1 1213 |
. . 3
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → 𝐴 ∈
ℝ*) |
| 2 | | simpll2 1214 |
. . 3
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → 𝐵 ∈
ℝ*) |
| 3 | | simplr1 1216 |
. . 3
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → 𝐶 ∈
ℝ*) |
| 4 | | simplr2 1217 |
. . 3
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → 𝐷 ∈
ℝ*) |
| 5 | | iooin 13396 |
. . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*))
→ ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)(,)if(𝐵 ≤ 𝐷, 𝐵, 𝐷))) |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 |
. 2
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)(,)if(𝐵 ≤ 𝐷, 𝐵, 𝐷))) |
| 7 | | simprr 772 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → 𝐷 ≤ 𝐵) |
| 8 | | xrmineq 13196 |
. . . . 5
⊢ ((𝐵 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐷
≤ 𝐵) → if(𝐵 ≤ 𝐷, 𝐵, 𝐷) = 𝐷) |
| 9 | 2, 4, 7, 8 | syl3anc 1373 |
. . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → if(𝐵 ≤ 𝐷, 𝐵, 𝐷) = 𝐷) |
| 10 | 9 | oveq2d 7421 |
. . 3
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)(,)if(𝐵 ≤ 𝐷, 𝐵, 𝐷)) = (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)(,)𝐷)) |
| 11 | | simpr 484 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*
∧ 𝐶 < 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) ∧ 𝐴 ≤ 𝐶) → 𝐴 ≤ 𝐶) |
| 12 | 11 | iftrued 4508 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*
∧ 𝐶 < 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) ∧ 𝐴 ≤ 𝐶) → if(𝐴 ≤ 𝐶, 𝐶, 𝐴) = 𝐶) |
| 13 | | simplr3 1218 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → 𝐶 < 𝐷) |
| 14 | 13 | adantr 480 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*
∧ 𝐶 < 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) ∧ 𝐴 ≤ 𝐶) → 𝐶 < 𝐷) |
| 15 | 12, 14 | eqbrtrd 5141 |
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*
∧ 𝐶 < 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) ∧ 𝐴 ≤ 𝐶) → if(𝐴 ≤ 𝐶, 𝐶, 𝐴) < 𝐷) |
| 16 | | simpr 484 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*
∧ 𝐶 < 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) ∧ ¬ 𝐴 ≤ 𝐶) → ¬ 𝐴 ≤ 𝐶) |
| 17 | 16 | iffalsed 4511 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*
∧ 𝐶 < 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) ∧ ¬ 𝐴 ≤ 𝐶) → if(𝐴 ≤ 𝐶, 𝐶, 𝐴) = 𝐴) |
| 18 | | simplrl 776 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*
∧ 𝐶 < 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) ∧ ¬ 𝐴 ≤ 𝐶) → 𝐴 < 𝐷) |
| 19 | 17, 18 | eqbrtrd 5141 |
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*
∧ 𝐶 < 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) ∧ ¬ 𝐴 ≤ 𝐶) → if(𝐴 ≤ 𝐶, 𝐶, 𝐴) < 𝐷) |
| 20 | 15, 19 | pm2.61dan 812 |
. . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → if(𝐴 ≤ 𝐶, 𝐶, 𝐴) < 𝐷) |
| 21 | 3, 1 | ifcld 4547 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → if(𝐴 ≤ 𝐶, 𝐶, 𝐴) ∈
ℝ*) |
| 22 | | ioon0 13388 |
. . . . 5
⊢
((if(𝐴 ≤ 𝐶, 𝐶, 𝐴) ∈ ℝ* ∧ 𝐷 ∈ ℝ*)
→ ((if(𝐴 ≤ 𝐶, 𝐶, 𝐴)(,)𝐷) ≠ ∅ ↔ if(𝐴 ≤ 𝐶, 𝐶, 𝐴) < 𝐷)) |
| 23 | 21, 4, 22 | syl2anc 584 |
. . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → ((if(𝐴 ≤ 𝐶, 𝐶, 𝐴)(,)𝐷) ≠ ∅ ↔ if(𝐴 ≤ 𝐶, 𝐶, 𝐴) < 𝐷)) |
| 24 | 20, 23 | mpbird 257 |
. . 3
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)(,)𝐷) ≠ ∅) |
| 25 | 10, 24 | eqnetrd 2999 |
. 2
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)(,)if(𝐵 ≤ 𝐷, 𝐵, 𝐷)) ≠ ∅) |
| 26 | 6, 25 | eqnetrd 2999 |
1
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) ∧ (𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ≠ ∅) |