Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioondisj2 Structured version   Visualization version   GIF version

Theorem ioondisj2 41632
Description: A condition for two open intervals not to be disjoint. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
ioondisj2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ≠ ∅)

Proof of Theorem ioondisj2
StepHypRef Expression
1 simpll1 1206 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → 𝐴 ∈ ℝ*)
2 simpll2 1207 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → 𝐵 ∈ ℝ*)
3 simplr1 1209 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → 𝐶 ∈ ℝ*)
4 simplr2 1210 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → 𝐷 ∈ ℝ*)
5 iooin 12762 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (if(𝐴𝐶, 𝐶, 𝐴)(,)if(𝐵𝐷, 𝐵, 𝐷)))
61, 2, 3, 4, 5syl22anc 836 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (if(𝐴𝐶, 𝐶, 𝐴)(,)if(𝐵𝐷, 𝐵, 𝐷)))
7 simprr 769 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → 𝐷𝐵)
8 xrmineq 12563 . . . . 5 ((𝐵 ∈ ℝ*𝐷 ∈ ℝ*𝐷𝐵) → if(𝐵𝐷, 𝐵, 𝐷) = 𝐷)
92, 4, 7, 8syl3anc 1365 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → if(𝐵𝐷, 𝐵, 𝐷) = 𝐷)
109oveq2d 7164 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → (if(𝐴𝐶, 𝐶, 𝐴)(,)if(𝐵𝐷, 𝐵, 𝐷)) = (if(𝐴𝐶, 𝐶, 𝐴)(,)𝐷))
11 simpr 485 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ 𝐴𝐶) → 𝐴𝐶)
1211iftrued 4478 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ 𝐴𝐶) → if(𝐴𝐶, 𝐶, 𝐴) = 𝐶)
13 simplr3 1211 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → 𝐶 < 𝐷)
1413adantr 481 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ 𝐴𝐶) → 𝐶 < 𝐷)
1512, 14eqbrtrd 5085 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ 𝐴𝐶) → if(𝐴𝐶, 𝐶, 𝐴) < 𝐷)
16 simpr 485 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ ¬ 𝐴𝐶) → ¬ 𝐴𝐶)
1716iffalsed 4481 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ ¬ 𝐴𝐶) → if(𝐴𝐶, 𝐶, 𝐴) = 𝐴)
18 simplrl 773 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ ¬ 𝐴𝐶) → 𝐴 < 𝐷)
1917, 18eqbrtrd 5085 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) ∧ ¬ 𝐴𝐶) → if(𝐴𝐶, 𝐶, 𝐴) < 𝐷)
2015, 19pm2.61dan 809 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → if(𝐴𝐶, 𝐶, 𝐴) < 𝐷)
213, 1ifcld 4515 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → if(𝐴𝐶, 𝐶, 𝐴) ∈ ℝ*)
22 ioon0 12754 . . . . 5 ((if(𝐴𝐶, 𝐶, 𝐴) ∈ ℝ*𝐷 ∈ ℝ*) → ((if(𝐴𝐶, 𝐶, 𝐴)(,)𝐷) ≠ ∅ ↔ if(𝐴𝐶, 𝐶, 𝐴) < 𝐷))
2321, 4, 22syl2anc 584 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → ((if(𝐴𝐶, 𝐶, 𝐴)(,)𝐷) ≠ ∅ ↔ if(𝐴𝐶, 𝐶, 𝐴) < 𝐷))
2420, 23mpbird 258 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → (if(𝐴𝐶, 𝐶, 𝐴)(,)𝐷) ≠ ∅)
2510, 24eqnetrd 3088 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → (if(𝐴𝐶, 𝐶, 𝐴)(,)if(𝐵𝐷, 𝐵, 𝐷)) ≠ ∅)
266, 25eqnetrd 3088 1 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷)) ∧ (𝐴 < 𝐷𝐷𝐵)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021  cin 3939  c0 4295  ifcif 4470   class class class wbr 5063  (class class class)co 7148  *cxr 10663   < clt 10664  cle 10665  (,)cioo 12728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-sup 8895  df-inf 8896  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233  df-q 12338  df-ioo 12732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator