ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ccatopth Unicode version

Theorem ccatopth 11256
Description: An opth 4323-like theorem for recovering the two halves of a concatenated word. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 12-Oct-2022.)
Assertion
Ref Expression
ccatopth  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( `  A
)  =  ( `  C
) )  ->  (
( A ++  B )  =  ( C ++  D
)  <->  ( A  =  C  /\  B  =  D ) ) )

Proof of Theorem ccatopth
StepHypRef Expression
1 oveq1 6014 . . . . 5  |-  ( ( A ++  B )  =  ( C ++  D )  ->  ( ( A ++  B ) prefix  ( `  A
) )  =  ( ( C ++  D ) prefix 
( `  A ) ) )
2 pfxccat1 11242 . . . . . 6  |-  ( ( A  e. Word  X  /\  B  e. Word  X )  ->  ( ( A ++  B
) prefix  ( `  A )
)  =  A )
3 oveq2 6015 . . . . . . 7  |-  ( ( `  A )  =  ( `  C )  ->  (
( C ++  D ) prefix 
( `  A ) )  =  ( ( C ++  D ) prefix  ( `  C
) ) )
4 pfxccat1 11242 . . . . . . 7  |-  ( ( C  e. Word  X  /\  D  e. Word  X )  ->  ( ( C ++  D
) prefix  ( `  C )
)  =  C )
53, 4sylan9eqr 2284 . . . . . 6  |-  ( ( ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A
)  =  ( `  C
) )  ->  (
( C ++  D ) prefix 
( `  A ) )  =  C )
62, 5eqeqan12d 2245 . . . . 5  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) ) )  ->  ( ( ( A ++  B ) prefix  ( `  A ) )  =  ( ( C ++  D
) prefix  ( `  A )
)  <->  A  =  C
) )
71, 6imbitrid 154 . . . 4  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) ) )  ->  ( ( A ++  B )  =  ( C ++  D )  ->  A  =  C )
)
873impb 1223 . . 3  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( `  A
)  =  ( `  C
) )  ->  (
( A ++  B )  =  ( C ++  D
)  ->  A  =  C ) )
9 simpr 110 . . . . . 6  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  ( A ++  B )  =  ( C ++  D ) )
10 simpl3 1026 . . . . . . 7  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  ( `  A )  =  ( `  C ) )
119fveq2d 5633 . . . . . . . 8  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  ( `  ( A ++  B ) )  =  ( `  ( C ++  D ) ) )
12 simpl1 1024 . . . . . . . . 9  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  ( A  e. Word  X  /\  B  e. Word  X ) )
13 ccatlen 11138 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  B  e. Word  X )  ->  ( `  ( A ++  B ) )  =  ( ( `  A
)  +  ( `  B
) ) )
1412, 13syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  ( `  ( A ++  B ) )  =  ( ( `  A )  +  ( `  B ) ) )
15 simpl2 1025 . . . . . . . . 9  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  ( C  e. Word  X  /\  D  e. Word  X ) )
16 ccatlen 11138 . . . . . . . . 9  |-  ( ( C  e. Word  X  /\  D  e. Word  X )  ->  ( `  ( C ++  D ) )  =  ( ( `  C
)  +  ( `  D
) ) )
1715, 16syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  ( `  ( C ++  D ) )  =  ( ( `  C )  +  ( `  D ) ) )
1811, 14, 173eqtr3d 2270 . . . . . . 7  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  (
( `  A )  +  ( `  B )
)  =  ( ( `  C )  +  ( `  D ) ) )
1910, 18opeq12d 3865 . . . . . 6  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  <. ( `  A ) ,  ( ( `  A )  +  ( `  B )
) >.  =  <. ( `  C ) ,  ( ( `  C )  +  ( `  D )
) >. )
209, 19oveq12d 6025 . . . . 5  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  (
( A ++  B ) substr  <. ( `  A ) ,  ( ( `  A
)  +  ( `  B
) ) >. )  =  ( ( C ++  D ) substr  <. ( `  C ) ,  ( ( `  C )  +  ( `  D )
) >. ) )
21 swrdccat2 11211 . . . . . 6  |-  ( ( A  e. Word  X  /\  B  e. Word  X )  ->  ( ( A ++  B
) substr  <. ( `  A ) ,  ( ( `  A
)  +  ( `  B
) ) >. )  =  B )
2212, 21syl 14 . . . . 5  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  (
( A ++  B ) substr  <. ( `  A ) ,  ( ( `  A
)  +  ( `  B
) ) >. )  =  B )
23 swrdccat2 11211 . . . . . 6  |-  ( ( C  e. Word  X  /\  D  e. Word  X )  ->  ( ( C ++  D
) substr  <. ( `  C ) ,  ( ( `  C
)  +  ( `  D
) ) >. )  =  D )
2415, 23syl 14 . . . . 5  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  (
( C ++  D ) substr  <. ( `  C ) ,  ( ( `  C
)  +  ( `  D
) ) >. )  =  D )
2520, 22, 243eqtr3d 2270 . . . 4  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  B  =  D )
2625ex 115 . . 3  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( `  A
)  =  ( `  C
) )  ->  (
( A ++  B )  =  ( C ++  D
)  ->  B  =  D ) )
278, 26jcad 307 . 2  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( `  A
)  =  ( `  C
) )  ->  (
( A ++  B )  =  ( C ++  D
)  ->  ( A  =  C  /\  B  =  D ) ) )
28 oveq12 6016 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( A ++  B )  =  ( C ++  D
) )
2927, 28impbid1 142 1  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( `  A
)  =  ( `  C
) )  ->  (
( A ++  B )  =  ( C ++  D
)  <->  ( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   <.cop 3669   ` cfv 5318  (class class class)co 6007    + caddc 8010  ♯chash 11005  Word cword 11079   ++ cconcat 11133   substr csubstr 11185   prefix cpfx 11212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-uz 9731  df-fz 10213  df-fzo 10347  df-ihash 11006  df-word 11080  df-concat 11134  df-substr 11186  df-pfx 11213
This theorem is referenced by:  ccatopth2  11257  ccatlcan  11258
  Copyright terms: Public domain W3C validator