ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ccatopth Unicode version

Theorem ccatopth 11187
Description: An opth 4288-like theorem for recovering the two halves of a concatenated word. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 12-Oct-2022.)
Assertion
Ref Expression
ccatopth  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( `  A
)  =  ( `  C
) )  ->  (
( A ++  B )  =  ( C ++  D
)  <->  ( A  =  C  /\  B  =  D ) ) )

Proof of Theorem ccatopth
StepHypRef Expression
1 oveq1 5963 . . . . 5  |-  ( ( A ++  B )  =  ( C ++  D )  ->  ( ( A ++  B ) prefix  ( `  A
) )  =  ( ( C ++  D ) prefix 
( `  A ) ) )
2 pfxccat1 11173 . . . . . 6  |-  ( ( A  e. Word  X  /\  B  e. Word  X )  ->  ( ( A ++  B
) prefix  ( `  A )
)  =  A )
3 oveq2 5964 . . . . . . 7  |-  ( ( `  A )  =  ( `  C )  ->  (
( C ++  D ) prefix 
( `  A ) )  =  ( ( C ++  D ) prefix  ( `  C
) ) )
4 pfxccat1 11173 . . . . . . 7  |-  ( ( C  e. Word  X  /\  D  e. Word  X )  ->  ( ( C ++  D
) prefix  ( `  C )
)  =  C )
53, 4sylan9eqr 2261 . . . . . 6  |-  ( ( ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A
)  =  ( `  C
) )  ->  (
( C ++  D ) prefix 
( `  A ) )  =  C )
62, 5eqeqan12d 2222 . . . . 5  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) ) )  ->  ( ( ( A ++  B ) prefix  ( `  A ) )  =  ( ( C ++  D
) prefix  ( `  A )
)  <->  A  =  C
) )
71, 6imbitrid 154 . . . 4  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) ) )  ->  ( ( A ++  B )  =  ( C ++  D )  ->  A  =  C )
)
873impb 1202 . . 3  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( `  A
)  =  ( `  C
) )  ->  (
( A ++  B )  =  ( C ++  D
)  ->  A  =  C ) )
9 simpr 110 . . . . . 6  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  ( A ++  B )  =  ( C ++  D ) )
10 simpl3 1005 . . . . . . 7  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  ( `  A )  =  ( `  C ) )
119fveq2d 5592 . . . . . . . 8  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  ( `  ( A ++  B ) )  =  ( `  ( C ++  D ) ) )
12 simpl1 1003 . . . . . . . . 9  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  ( A  e. Word  X  /\  B  e. Word  X ) )
13 ccatlen 11069 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  B  e. Word  X )  ->  ( `  ( A ++  B ) )  =  ( ( `  A
)  +  ( `  B
) ) )
1412, 13syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  ( `  ( A ++  B ) )  =  ( ( `  A )  +  ( `  B ) ) )
15 simpl2 1004 . . . . . . . . 9  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  ( C  e. Word  X  /\  D  e. Word  X ) )
16 ccatlen 11069 . . . . . . . . 9  |-  ( ( C  e. Word  X  /\  D  e. Word  X )  ->  ( `  ( C ++  D ) )  =  ( ( `  C
)  +  ( `  D
) ) )
1715, 16syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  ( `  ( C ++  D ) )  =  ( ( `  C )  +  ( `  D ) ) )
1811, 14, 173eqtr3d 2247 . . . . . . 7  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  (
( `  A )  +  ( `  B )
)  =  ( ( `  C )  +  ( `  D ) ) )
1910, 18opeq12d 3832 . . . . . 6  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  <. ( `  A ) ,  ( ( `  A )  +  ( `  B )
) >.  =  <. ( `  C ) ,  ( ( `  C )  +  ( `  D )
) >. )
209, 19oveq12d 5974 . . . . 5  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  (
( A ++  B ) substr  <. ( `  A ) ,  ( ( `  A
)  +  ( `  B
) ) >. )  =  ( ( C ++  D ) substr  <. ( `  C ) ,  ( ( `  C )  +  ( `  D )
) >. ) )
21 swrdccat2 11142 . . . . . 6  |-  ( ( A  e. Word  X  /\  B  e. Word  X )  ->  ( ( A ++  B
) substr  <. ( `  A ) ,  ( ( `  A
)  +  ( `  B
) ) >. )  =  B )
2212, 21syl 14 . . . . 5  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  (
( A ++  B ) substr  <. ( `  A ) ,  ( ( `  A
)  +  ( `  B
) ) >. )  =  B )
23 swrdccat2 11142 . . . . . 6  |-  ( ( C  e. Word  X  /\  D  e. Word  X )  ->  ( ( C ++  D
) substr  <. ( `  C ) ,  ( ( `  C
)  +  ( `  D
) ) >. )  =  D )
2415, 23syl 14 . . . . 5  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  (
( C ++  D ) substr  <. ( `  C ) ,  ( ( `  C
)  +  ( `  D
) ) >. )  =  D )
2520, 22, 243eqtr3d 2247 . . . 4  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( `  A )  =  ( `  C ) )  /\  ( A ++  B )  =  ( C ++  D
) )  ->  B  =  D )
2625ex 115 . . 3  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( `  A
)  =  ( `  C
) )  ->  (
( A ++  B )  =  ( C ++  D
)  ->  B  =  D ) )
278, 26jcad 307 . 2  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( `  A
)  =  ( `  C
) )  ->  (
( A ++  B )  =  ( C ++  D
)  ->  ( A  =  C  /\  B  =  D ) ) )
28 oveq12 5965 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( A ++  B )  =  ( C ++  D
) )
2927, 28impbid1 142 1  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( `  A
)  =  ( `  C
) )  ->  (
( A ++  B )  =  ( C ++  D
)  <->  ( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   <.cop 3640   ` cfv 5279  (class class class)co 5956    + caddc 7943  ♯chash 10937  Word cword 11011   ++ cconcat 11064   substr csubstr 11116   prefix cpfx 11143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-1o 6514  df-er 6632  df-en 6840  df-dom 6841  df-fin 6842  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-inn 9052  df-n0 9311  df-z 9388  df-uz 9664  df-fz 10146  df-fzo 10280  df-ihash 10938  df-word 11012  df-concat 11065  df-substr 11117  df-pfx 11144
This theorem is referenced by:  ccatopth2  11188  ccatlcan  11189
  Copyright terms: Public domain W3C validator