ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abscld Unicode version

Theorem abscld 11192
Description: Real closure of absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
abscld.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
abscld  |-  ( ph  ->  ( abs `  A
)  e.  RR )

Proof of Theorem abscld
StepHypRef Expression
1 abscld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 abscl 11062 . 2  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
31, 2syl 14 1  |-  ( ph  ->  ( abs `  A
)  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   ` cfv 5218   CCcc 7811   RRcr 7812   abscabs 11008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-rp 9656  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010
This theorem is referenced by:  maxabsle  11215  maxabslemlub  11218  maxabslemval  11219  maxcl  11221  dfabsmax  11228  maxltsup  11229  max0addsup  11230  minabs  11246  bdtrilem  11249  bdtri  11250  mul0inf  11251  climuni  11303  climabs0  11317  mulcn2  11322  reccn2ap  11323  cn1lem  11324  cjcn2  11326  climsqz  11345  climsqz2  11346  climcvg1nlem  11359  fsumabs  11475  iserabs  11485  divcnv  11507  expcnv  11514  explecnv  11515  absltap  11519  absgtap  11520  georeclim  11523  geoisumr  11528  cvgratnnlemnexp  11534  cvgratnnlemmn  11535  cvgratnnlemabsle  11537  cvgratnnlemfm  11539  cvgratnnlemrate  11540  cvgratnn  11541  cvgratz  11542  mertenslemub  11544  mertenslemi1  11545  mertenslem2  11546  fprodabs  11626  efcllemp  11668  efaddlem  11684  eftlub  11700  ef01bndlem  11766  sin01bnd  11767  cos01bnd  11768  absef  11779  dvdsabseq  11855  alzdvds  11862  dvdsbnd  11959  sqnprm  12138  pclemub  12289  mul4sqlem  12393  addcncntoplem  14090  mulcncflem  14129  cnopnap  14133  limcimolemlt  14172  cnplimclemle  14176  limccnp2lem  14184  dveflem  14226  rpabscxpbnd  14398  lgsdirprm  14474  lgsdilem2  14476  lgsne0  14478  lgsabs1  14479  2sqlem1  14500  mul2sq  14502  2sqlem3  14503  qdencn  14814  apdifflemf  14833  apdiff  14835  ltlenmkv  14857
  Copyright terms: Public domain W3C validator