![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abscld | Unicode version |
Description: Real closure of absolute value. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
abscld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
abscld |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abscld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | abscl 10708 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-coll 4001 ax-sep 4004 ax-nul 4012 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-iinf 4460 ax-cnex 7629 ax-resscn 7630 ax-1cn 7631 ax-1re 7632 ax-icn 7633 ax-addcl 7634 ax-addrcl 7635 ax-mulcl 7636 ax-mulrcl 7637 ax-addcom 7638 ax-mulcom 7639 ax-addass 7640 ax-mulass 7641 ax-distr 7642 ax-i2m1 7643 ax-0lt1 7644 ax-1rid 7645 ax-0id 7646 ax-rnegex 7647 ax-precex 7648 ax-cnre 7649 ax-pre-ltirr 7650 ax-pre-ltwlin 7651 ax-pre-lttrn 7652 ax-pre-apti 7653 ax-pre-ltadd 7654 ax-pre-mulgt0 7655 ax-pre-mulext 7656 ax-arch 7657 ax-caucvg 7658 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 944 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-reu 2395 df-rmo 2396 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-nul 3328 df-if 3439 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-tr 3985 df-id 4173 df-po 4176 df-iso 4177 df-iord 4246 df-on 4248 df-ilim 4249 df-suc 4251 df-iom 4463 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-fv 5087 df-riota 5682 df-ov 5729 df-oprab 5730 df-mpo 5731 df-1st 5989 df-2nd 5990 df-recs 6153 df-frec 6239 df-pnf 7719 df-mnf 7720 df-xr 7721 df-ltxr 7722 df-le 7723 df-sub 7851 df-neg 7852 df-reap 8248 df-ap 8255 df-div 8339 df-inn 8624 df-2 8682 df-3 8683 df-4 8684 df-n0 8875 df-z 8952 df-uz 9222 df-rp 9337 df-seqfrec 10105 df-exp 10179 df-cj 10500 df-re 10501 df-im 10502 df-rsqrt 10655 df-abs 10656 |
This theorem is referenced by: maxabsle 10861 maxabslemlub 10864 maxabslemval 10865 maxcl 10867 dfabsmax 10874 maxltsup 10875 max0addsup 10876 minabs 10892 bdtrilem 10895 bdtri 10896 mul0inf 10897 climuni 10947 climabs0 10961 mulcn2 10966 reccn2ap 10967 cn1lem 10968 cjcn2 10970 climsqz 10989 climsqz2 10990 climcvg1nlem 11003 fsumabs 11119 iserabs 11129 divcnv 11151 expcnv 11158 explecnv 11159 absltap 11163 absgtap 11164 georeclim 11167 geoisumr 11172 cvgratnnlemnexp 11178 cvgratnnlemmn 11179 cvgratnnlemabsle 11181 cvgratnnlemfm 11183 cvgratnnlemrate 11184 cvgratnn 11185 cvgratz 11186 mertenslemub 11188 mertenslemi1 11189 mertenslem2 11190 efcllemp 11208 efaddlem 11224 eftlub 11240 ef01bndlem 11307 sin01bnd 11308 cos01bnd 11309 absef 11319 dvdsabseq 11386 alzdvds 11393 dvdsbnd 11486 sqnprm 11655 addcncntoplem 12530 mulcncflem 12569 limcimolemlt 12582 cnplimclemle 12586 limccnp2lem 12594 qdencn 12899 |
Copyright terms: Public domain | W3C validator |