ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnnval Unicode version

Theorem expnnval 10613
Description: Value of exponentiation to positive integer powers. (Contributed by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expnnval  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ N
)  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )

Proof of Theorem expnnval
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  A  e.  CC )
2 simpr 110 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  NN )
32nnzd 9438 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  ZZ )
42nnnn0d 9293 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  NN0 )
54nn0ge0d 9296 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  0  <_  N )
65olcd 735 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A #  0  \/  0  <_  N )
)
7 exp3val 10612 . . 3  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( A ^ N
)  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) ) )
81, 3, 6, 7syl3anc 1249 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ N
)  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) ) )
9 nnne0 9010 . . . . . 6  |-  ( N  e.  NN  ->  N  =/=  0 )
109neneqd 2385 . . . . 5  |-  ( N  e.  NN  ->  -.  N  =  0 )
1110iffalsed 3567 . . . 4  |-  ( N  e.  NN  ->  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) )  =  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) )
12 nngt0 9007 . . . . 5  |-  ( N  e.  NN  ->  0  <  N )
1312iftrued 3564 . . . 4  |-  ( N  e.  NN  ->  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) )  =  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) )
1411, 13eqtrd 2226 . . 3  |-  ( N  e.  NN  ->  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) )  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )
1514adantl 277 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  if ( N  =  0 ,  1 ,  if ( 0  < 
N ,  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) )  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )
168, 15eqtrd 2226 1  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ N
)  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164   ifcif 3557   {csn 3618   class class class wbr 4029    X. cxp 4657   ` cfv 5254  (class class class)co 5918   CCcc 7870   0cc0 7872   1c1 7873    x. cmul 7877    < clt 8054    <_ cle 8055   -ucneg 8191   # cap 8600    / cdiv 8691   NNcn 8982   ZZcz 9317    seqcseq 10518   ^cexp 10609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519  df-exp 10610
This theorem is referenced by:  exp1  10616  expp1  10617  expnegap0  10618
  Copyright terms: Public domain W3C validator