ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnnval Unicode version

Theorem expnnval 10296
Description: Value of exponentiation to positive integer powers. (Contributed by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expnnval  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ N
)  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )

Proof of Theorem expnnval
StepHypRef Expression
1 simpl 108 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  A  e.  CC )
2 simpr 109 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  NN )
32nnzd 9172 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  ZZ )
42nnnn0d 9030 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  NN0 )
54nn0ge0d 9033 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  0  <_  N )
65olcd 723 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A #  0  \/  0  <_  N )
)
7 exp3val 10295 . . 3  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( A ^ N
)  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) ) )
81, 3, 6, 7syl3anc 1216 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ N
)  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) ) )
9 nnne0 8748 . . . . . 6  |-  ( N  e.  NN  ->  N  =/=  0 )
109neneqd 2329 . . . . 5  |-  ( N  e.  NN  ->  -.  N  =  0 )
1110iffalsed 3484 . . . 4  |-  ( N  e.  NN  ->  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) )  =  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) )
12 nngt0 8745 . . . . 5  |-  ( N  e.  NN  ->  0  <  N )
1312iftrued 3481 . . . 4  |-  ( N  e.  NN  ->  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) )  =  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) )
1411, 13eqtrd 2172 . . 3  |-  ( N  e.  NN  ->  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) )  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )
1514adantl 275 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  if ( N  =  0 ,  1 ,  if ( 0  < 
N ,  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) )  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )
168, 15eqtrd 2172 1  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ N
)  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 697    = wceq 1331    e. wcel 1480   ifcif 3474   {csn 3527   class class class wbr 3929    X. cxp 4537   ` cfv 5123  (class class class)co 5774   CCcc 7618   0cc0 7620   1c1 7621    x. cmul 7625    < clt 7800    <_ cle 7801   -ucneg 7934   # cap 8343    / cdiv 8432   NNcn 8720   ZZcz 9054    seqcseq 10218   ^cexp 10292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-seqfrec 10219  df-exp 10293
This theorem is referenced by:  exp1  10299  expp1  10300  expnegap0  10301
  Copyright terms: Public domain W3C validator