ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geoisum Unicode version

Theorem geoisum 11254
Description: The infinite sum of  1  +  A ^ 1  +  A ^ 2... is  (
1  /  ( 1  -  A ) ). (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geoisum  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  sum_ k  e.  NN0  ( A ^ k )  =  ( 1  /  (
1  -  A ) ) )
Distinct variable group:    A, k

Proof of Theorem geoisum
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9328 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 9034 . 2  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
0  e.  ZZ )
3 simpr 109 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN0 )  ->  k  e.  NN0 )
4 simpll 503 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN0 )  ->  A  e.  CC )
54, 3expcld 10392 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN0 )  ->  ( A ^
k )  e.  CC )
6 oveq2 5750 . . . 4  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
7 eqid 2117 . . . 4  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
86, 7fvmptg 5465 . . 3  |-  ( ( k  e.  NN0  /\  ( A ^ k )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( A ^ k ) )
93, 5, 8syl2anc 408 . 2  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN0 )  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
10 simpl 108 . . 3  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  A  e.  CC )
11 simpr 109 . . 3  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  A
)  <  1 )
1210, 11, 9geolim 11248 . 2  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( A ^ n ) ) )  ~~>  ( 1  /  ( 1  -  A ) ) )
131, 2, 9, 5, 12isumclim 11158 1  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  sum_ k  e.  NN0  ( A ^ k )  =  ( 1  /  (
1  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1316    e. wcel 1465   class class class wbr 3899    |-> cmpt 3959   ` cfv 5093  (class class class)co 5742   CCcc 7586   0cc0 7588   1c1 7589    < clt 7768    - cmin 7901    / cdiv 8400   NN0cn0 8945   ^cexp 10260   abscabs 10737   sum_csu 11090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-isom 5102  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-frec 6256  df-1o 6281  df-oadd 6285  df-er 6397  df-en 6603  df-dom 6604  df-fin 6605  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-3 8748  df-4 8749  df-n0 8946  df-z 9023  df-uz 9295  df-q 9380  df-rp 9410  df-fz 9759  df-fzo 9888  df-seqfrec 10187  df-exp 10261  df-ihash 10490  df-cj 10582  df-re 10583  df-im 10584  df-rsqrt 10738  df-abs 10739  df-clim 11016  df-sumdc 11091
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator